MONOGRAPHS IN COMPUTER SCIENCE

EVOLUTIONARY
SYNTHESIS OF
PATTERN
RECOGNITION
SYSTEMS

Bir Bhanu
Yinggiang Lin
Krzysztof Krawiec

@ Springer

Evolutionary Synthesis of
Pattern Recognition Systems

Monographs in Computer Science

Abadi and Cardelli, A Theory of Objects
Benosman and Kang [editors], Panoramic Vision: Sensors, Theory and Applications

Broy and Stelen, Specification and Development of Interactive Systems: FOCUS on
Streams, Interfaces, and Refinement

Brzozowski and Seger, Asynchronous Circuits

Cantone, Omodeo, and Policriti, Set Theory for Computing: From Decision
Procedures to Declarative Programming with Sets

Castillo, Gutiérrez, and Hadi, Expert Systems and Probabilistic Network Models
Downey and Fellows, Parameterized Complexity
Feijen and van Gasteren, On a Method of Multiprogramming

Herbert and Spérck Jones [editors], Computer Systems: Theory, Technology, and
Applications

Leiss, Language Equations
Mclver and Morgan [editors], Programming Methodology
Mclver and Morgan, Abstraction, Refinement and Proof for Probabilistic Systems

Misra, A Discipline of Multiprogramming: Program Theory for Distributed
Applications

Nielson [editor], ML with Concurrency
Paton [editor], Active Rules in Database Systems
Selig, Geometric Fundamentals of Robotics, Second Edition

Tonella and Potrich, Reverse Engineering of Object Oriented Code

Bir Bhanu
Yingqgiang Lin
Krzysztof Krawiec

Evolutionary Synthesis of
Pattern Recognition Systems

@ Springer

Bir Bhanu

Center for Research in
Intelligent Systems
University of California
at Riverside

Bourns Hall RM B232
Riverside, CA 92521

Series Editors

David Gries

Dept. of Computer Science
Cornell University

Upson Hall

Ithaca NY 14853-7501

Yinggiang Lin Krzysztof Krawiec
Center for Research in Center for Research in
Intelligent Systems Intelligent Systems
University of California University of California
at Riverside at Riverside

Bourns Hall RM B232 Bourns Hall RM B232
Riverside CA 92521 Riverside CA 92521

Fred B. Schneider

Dept. Computer Science
Cornell University
Upson Hall

Ithaca NY 14853-7501

Library of Congress Cataloging-in-Publication Data

Bhanu, Bir.

Evolutionary Synthesis of Pattern Recognition Systems /Bir Bhanu, Yingqiang Lin, and Krzysztof

Krawiec.

p. cm. —(Monographs in Computer Science)
Includes bibliographic references and index.

ISBN 0-387-21295-7 e-ISBN 0-387-24452-2 Printed on acid-free paper.

© 2005 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street,
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now know or hereafter

developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if
the are not identified as such, is not to be taken as an expression of opinion as to whether or not

they are subject to proprietary rights.

Printed in the United States of America.

987654321

springeronline.com

(BS/DH)

SPIN (HC) 10984741 /SPIN (eBK) 11381136

Contents

LIST OF FIGURES

LIST OF TABLES

PREFACE

CHAPTER 1 INTRODUCTION

CHAPTER 2

1.1

1.2

1.3

1.4

Object Detection and Recognition Problem
Motivations for Evolutionary Computation

Evolutionary Approaches for Synthesis and
Analysis

Outline of the Book

FEATURE SYNTHESIS FOR OBJECT
DETECTION

2.1

22

23

Introduction

Motivation and Related Research
2.2.1 Motivation
2.2.2 Related research

Genetic Programming for Feature Synthesis
2.3.1 Design considerations

xi

Xvii

Xxi

11
11
12
12
13

15
16

vi Table of Contents

2.3.2 Selection, crossover and mutation 20
2.3.3 Steady-state and generational genetic
programming 23
2.4 Experiments 27
2.4.1 SAR Images 28
2.4.2 Infrared and color images 45
2.4.3 Comparison with GP with hard limit on
composite operator size 53
2.4.4 Comparison with image-based GP 62
2.4.5 Comparison with a traditional ROI
extraction algorithm 68
2.4.6 A multi-class example 73
2.5 Conclusions 78

CHAPTER 3 MDL-BASED EFFICIENT GENETIC

PROGRAMMING FOR OBJECT DETECTION 79
3.1 Introduction 79
3.2 Motivation and Related Research 80
3.3 Improving the Efficiency of GP 84
3.3.1 MDL principle-based fitness function 84
3.3.2 Genetic programming with smart crossover
and smart mutation 86
3.3.3 Steady-state and generational genetic
programming 90
3.4 Experiments 93
3.4.1 Road extraction 95
3.4.2 Lake extraction 103
3.4.3 River extraction 105
3.4.4 Field extraction 108
3.4.5 Tank extraction 110

3.4.6 Comparison of smart GP with normal GP 113

Table of Contents Vii

CHAPTER 4

CHAPTER 5

3.5

Conclusions

FEATURE SELECTION FOR OBJECT

DETECTION
4.1 Introduction
4.2 Motivation and Related Research
4.3 Feature Evaluations and Selection
4.3.1 Feature selection
4.3.2 Various criteria for fitness function
4.4 System Description
4.4.1 CFAR detector
4.4.2 Feature extractor
4.4.3 GA for feature selection
4.5 Experiments
4.5.1 MDL principle-based fitness function
4.5.2 Other fitness functions
4.5.3 Comparison and analysis
4.6 Conclusions

EVOLUTIONARY FEATURE SYNTHESIS FOR

OBJECT RECOGNITION
5.1 Introduction
5.2 Motivation and Related Research

53

5.2.1 Motivation
5.2.2 Related research

Coevolutionary GP for Feature Synthesis
5.3.1 Design considerations
5.3.2 Selection, crossover and mutation

119

121

121

123

125
126
127

131
131
134
142

143
144
153
154

164

165

165

167
167
168

170
170
174

viii Table of Contents

5.3.3 Generational coevolutionary genetic

programming 175
5.3.4 Bayesian classifier 177
5.4 Experiments 177
5.4.1 Distinguish objects from clutter 178
5.4.2 Recognize objects 182
5.4.3 Comparison with other classification
algorithms 193
5.4.4 Discussion 197
5.5 Conclusions 199

CHAPTER 6 LINEAR GENETIC PROGRAMMING FOR

OBJECT RECOGNITION 201
6.1 Introduction 201
6.2 Explicit Feature Construction 202
6.3 Linear Genetic Programming 205
6.4 Evolutionary Feature Programming 206
6.4.1 Representation and its properties 208
6.4.2 Execution of feature extraction procedure 216
6.4.3 Locality of representation 218
6.4.4 Evaluation of solutions 221
6.5 Coevolutionary Feature Programming 223

6.6 Decomposition of Explicit Feature
Construction 226

6.7 Conclusions 232

Table of Contents X

CHAPTER 7

CHAPTER 8

APPLICATIONS OF LINEAR GENETIC

PROGRAMMING FOR OBJECT RECOGNITION

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Introduction
Technical Implementation

Common Experimental Framework

7.3.1 Background knowledge

7.3.2 Parameter settings and performance
measures

Recognition of Common Household Objects
7.4.1 Problem and data

7.4.2 Parameter settings

7.4.3 Results

Object Recognition in Radar Modality

7.5.1 Problem decomposition at instruction level
7.5.2 Binary classification tasks

7.5.3 On-line adaptation of population number
7.5.4 Scalability

7.5.5 Recognizing object variants

7.5.6 Problem decomposition at decision level

Analysis of Evolved Solutions

Conclusions

SUMMARY AND FUTURE WORK

8.1

8.2

REFERENCES

INDEX

Summary

Future Work

233

233

234

235
235

237
238
238
240
241
245
247
252
256
259
260
264
268

275

277

277

280

282

291

List of Figures

Chapter 2
Figure 2.1. Steady-state genetic programming algorithm.c..cccoeveevennnenn, 25
Figure 2.2. Generational genetic programming algorithm.ccccceevvevrrirnnnnne. 26
Figure 2.3. Training SAR image containing 1oad.cccccecererveneenricnneeneenn 30
Figure 2.4. Sixteen primitive feature images of training SAR image

CONtAINING TOAM. ..eviiiiiieiieieiee e et 31
Figure 2.5. Learned composite OPerator tree...........overereriesereeraceeeeeenreeeeeneenne 32
Figure 2.6. Fitness versus generation (road vs. field).cc.coeveveveieneinnnne. 32
Figure 2.7. Utility of primitive operators and primitive feature images. 34
Figure 2.8. Feature images output by the nodes of the best composite

operator. The ouput of the root node is shown Figure 2.3(c). 35
Figure 2.9. ROIs extracted from the output images of the nodes of the

best composite operator. The fitness value is shown for the

entire image. The ouput of the root node is shown Figure

2.3(d). e s 36
Figure 2.10. Testing SAR images containing road.c...cocceveeveenenreirerenneas 37
Figure 2.11. Training SAR image containing lake..........c.cccccovinieniiniienennnnne. 38
Figure 2.12. Testing SAR image containing lake.ccccoceevvvennvcrnincnine. 38
Figure 2.13. Training SAR image containing river..........cccooveceeereneveereeenereenes 39
Figure 2.14. Learned composite Operator tree..........cocevverurrrevevernecnenieeenennees 40
Figure 2.15. Fitness versus generation (river vs. field).cocveevcnniinnincncnie. 40
Figure 2.16. Testing SAR image containing river.c.cocevevereerereecreninencenee 40
Figure 2.17. Training SAR image containing field.cccocoecninneiniinin 41
Figure 2.18. Testing SAR image containing field...........cccoevvninenenncinnniin 42
Figure 2.19. Training SAR image containing tank.cccccoevevinicvnvcninnnnnne 42
Figure 2.20. Learned composite operator tree in LISP notation.cc..c...... 43
Figure 2.21. Fitness versus generation (T72 tank).ccoevvninininininnncnnnn 43
Figure 2.22. Testing SAR image containing tank.cccccceevveniiinniinnnns 44
Figure 2.23. Training IR image containing a Persom..........ocovvvreveireveneevinnnennas 46

Xii List of Figures
Figure 2.24. Learned composite operator tree in LISP notation..........c.ccccevenee 47
Figure 2.25. Fitness versus generation (PErson).coceeerruererreorrerieerecrnsenens 47
Figure 2.26. Testing IR images containing a person.c.cccevecveverveererrerienenenns 49
Figure 2.27. Training RGB color image containing car.cc.ccoccervrveeneecnee. 50
Figure 2.28. Learned composite operator tree in LISP notation...........ccc.cee..... 50
Figure 2.29. Fitness versus generation (Car).cc.c.coeoveecvereneerienienreeneseencesseennes 51
Figure 2.30. Testing RGB color image containing car.c.c.coceeveeerverccennene 51
Figure 2.31. Training and testing RGB color image containing SUV................ 52
Figure 2.32. Results on SAR images containing road.ccccoceveerereevecnecnnnnn 55
Figure 2.33. Learned composite operator tree in LISP notation...........c.c.cc........ 56
Figure 2.34. Fitness versus generation (road vs. field).cccoccevvnvnnncnninns 56
Figure 2.35. Results on SAR images containing lake...........cccoeverrenvincenennnnne. 57
Figure 2.36. Results on SAR images containing river.......c.ccoeeeereenerceeneennenee. 58
Figure 2.37. Learned composite operator tree in LISP notation...........cccoeeeeene. 59
Figure 2.38. Fitness versus generation (river vs. field).......ccccoceriienriinnencnnnncne 59
Figure 2.39. Results on SAR images containing field.cccovvevriieienennnene. 60
Figure 2.40. Results on SAR images containing tank.cccccecervevirvenccnnnene 61
Figure 2.41. Learned composite operator tree in LISP notation.c.c.cccc...... 61
Figure 2.42. Fitness versus generation (T72 tank)..........cceevevevennceeneneneceennnnn 61
Figure 2.43. Results on SAR images containing road.c.ccccevvecverievenecnnnen 64
Figure 2.44. Results on SAR images containing 1ake........c...ccceovvvenincncnincnee 64
Figure 2.45. Results on SAR images containing Irver........cccoceveeveercrenenronens 66
Figure 2.46. Results on SAR images containing field.c.cocevninnninnnns 66
Figure 2.47. ROIs extracted by the traditional ROI extraction algorithm. 71
Figure 2.48. ROIs extracted by the GP-evolved composite operators................ 72
Figure 2.49. SAR image containing lake, road, field, tree and shadow.............. 74
Figure 2.50. Lake, road and field ROIs extracted by the composite

operators learned in Examples 1,2 and 4........c.cccceoeeveveeinnnnnnne 74
Figure 2.51. Histogram of pixel values (range 0 to 200) within lake and

TOAA TEZIONS. veveereuierieieietreierteteteieseesreeentsre e e resreseeneneerneneeneens 75
Figure 2.52. SAR image containing lake and road.c.c.ccccocevriniiniieinnnnn 75
Figure 2.53. lake and road ROIs extracted from training images. 76
Figure 2.54. Lake, road and field ROIs extracted from the testing image........... 77
Figure 2.55. Lake, road and field ROIs extracted by the traditional

AlGOTTNML....eeeiiiiiicc 77

List of Figures Xiii

Chapter 3
Figure 3.1. Modified Steady-state genetic programming............cccceeveerervecvenenne 91
Figure 3.2. Modified Generational genetic programming...........c..occevveeveererens 92
Figure 3.3. Training SAR image containing road.cccevevveriveresierensnreneenns 95
Figure 3.4. Learned composite operator tree in LISP notation.c.ccceee.e. 96
Figure 3.5. Fitness versus generation (road vs. field).ccccoovvvvevevvnrivncnnnnn, 97
Figure 3.6. Frequency of primitive operators and primitive feature
IMAZES. c.eviviniiiriireieteie ettt st e et sr e seens 98
Figure 3.7. Feature images output at the nodes of the best composite
operator learned by smart GP.cccceeviivinivcinnieeeenen, 100

Figure 3.8. ROIs extracted from the output images at the nodes of the
best composite operator from smart GP. The goodness value

is shown for the entire iMage.covecveeervevieceeceerene e 101
Figure 3.9. Testing SAR images containing road.c.cccceeeevreeeeevennrvnereens 102
Figure 3.10. Training SAR image containing lake..........c.cccocevverveeecrrcvriinnnnne 103
Figure 3.11. Testing SAR image containing lake.ccocevveerevieciecinerennnnne 104
Figure 3.12. Learned composite operator tree in LISP notation. 105
Figure 3.13. Training SAR image containing river..........cocovervvvereevereercevennens 105
Figure 3.14. Learned composite operator tree in LISP notation. 106
Figure 3.15. Fitness versus generation (river vs. field).......c.cocooeveincnnnnnee. 107
Figure 3.16. Testing SAR image containing river.c.cococvererenrerernnrerenen 107
Figure 3.17. Training SAR image containing field.c...ccecevveririenineriencnncne 108
Figure 3.18. Testing SAR image containing field.............cocecveririennincnnnnns 109
Figure 3.19. Learned composite operator tree in LISP notation.c..cc.c..... 110
Figure 3.20. Training SAR image containing a tank...........c.cccceevevenvenrcrinncneeas 111
Figure 3.21. Learned composite operator tree in LISP notation. 112
Figure 3.22. Fitness versus generation (T72 tank).cccccecveenrevirniinciniecns 112
Figure 3.23. Testing SAR image containing tank.cccceceerereererenrenencnens 113
Figure 3.24. The average goodness of the best composite operators
VETSUS ZENETALION. ..ovveivereerenreriireieirceniesiesiesreenreseeeeeaneeneesnesnnes 115
Chapter 4
Figure 4.1. System diagram for feature selection.........c...c.ocecevceiiiiiiicennenn 125
Figure 4.2. SAR image and CFAR detection result.ccocccoveeincnniiinn 133

Figure 4.3. Example of the standard deviation feature............ccccccoeeniiiiiis 135

Xiv List of Figures

Figure 4.4. Example of the fractal dimension feature.............cc.ccoevrvvienenrnnnn. 136
Figure 4.5. Examples of images used to compute size features (4-6) for
(a) object and (b) CIULET.coovviviiiiiriecre e sre e 138
Figure 4.6. Fitness values vs. generation mumber.ccocveceviveereececennieennn 150
Figure 4.7. Training error rates vs. generation NUMDET.ccceveevreecrencrnenne. 151
Figure 4.8. The number of features selected vs. generation number. 152
Figure 4.9. Average performance of various fitness functions...........c.ccco...... 162
Chapter 5
Figure 5.1. System diagram for object recognition using coevolutionary
geNetic PrOZIAMIMINE.ocvecveruirrerreereesuessersesreessessesssensesseeseenseensenes 171
Figure 5.2. Computation of fitness of jth composite operator of ith sub-
POPULALION. ..ottt ettt e ere 173
Figure 5.3. Generational coevolutionary genetic programming.e.ce..... 176
Figure 5.4. Example object and clutter SAR images.ccccvevveirvrerernererenne 179
Figure 5.5. Composite operator vector learned by CGP.........ccccevvvverevevencnne. 182
Figure 5.6. Five objects used in T€COZNILION.cvvverererererirnrererieernecsreeneenes 185
Figure 5.7. Composite operator vector learned by CGP with 5 sub-
POPUIALIONS. ...oviiiiiniieiirintiii ettt s saenas 189
Figure 5.8. Composite operator vector learned by CGP.........ccccevvvcerirervnnenn 192
Chapter 6
Figure 6.1. The outline of evolutionary feature programming (EFP).............. 207
Figure 6.2. Graph representation of an exemplary feature extraction
PTOCEAUTE.eueeirererrerteinercrteniee e steeteeesbebeseeeseraneearereeensensesaeeasees 211
Figure 6.3. Details on genotype-phenotype mapping.ccceeveeeeeveeereriesvennenn. 212
Figure 6.4. Execution of feature extraction procedures for a single
training example (IMAZE) X. ...cevveeererreieiererrereeerceeeseenreseeeenens 216

Figure 6.5. Comparison of particular decomposition levels for
evolutionary feature programming.cceeeeveererreeneceenneneenennne 231

List of Figures XV

Chapter 7
Figure 7.1. Software implementation of CVGP. Dashed-line components
implement background knowledge.........ccccoeeveneiniinieinii 235
Figure 7.2. Exemplary images from COIL20 database (one representative
PET CLASS). tvveiiiieriirieiiienitesteeierne e rereereesteesteesreesrneseaesanesarearsnenens 238

Figure 7.3. Apparent size changes resulting from MBR cropping for
different aspects of two selected objects from the COIL20
database. ..oceeeuieiierei et et 239
Figure 7.4. Fitness of the best individual, test set recognition ratio, and
test set TP ratio for binary COIL20 experiments (means over

10 runs and 0.95 confidence intervals).cccoeeeirieirienienreennann, 242

Figure 7.5. Test set FP ratio and tree size for binary COIL20 experiments
(means over 10 runs and 0.95 confidence intervals).c........... 243

Figure 7.6. Decision tree h used by the final recognition system evolved
in one of the COIL20 binary experiments.cceecereeeeererceenee 245
Figure 7.7. Selected vehicles represented in MSTAR database............c.c....... 249
Figure 7.8. Exemplary images from the MSTAR database.ccccceevercrunncee 249
Figure 7.9. Three vehicles and their correspondings SAR images. 250

Figure 7.10. Fitness graph for binary experiment (fitness of the best
individual for each generation).cccoceververerenenrcecnicncrennene 254

Figure 7.11. True positive (TP) and false positive (FP) ratios for binary
recognition tasks (testing set, single recognition systems).
Chart presents averages over 10 independent synthesis
processes and their .95 confidence intervals.ccoceeverenenne. 256
Figure 7.12. True positive (TP) and false positive (FP) ratios for binary
recognition tasks (testing set, single recognition systems,
adaptive CC). Chart presents averages over 10 independent

synthesis processes and their 0.95 confidence intervals. 259
Figure 7.13. Test set recognition ratios of compound recognition systems

for different number of decision classes.ccceeveirccricncnnnn. 261
Figure 7.14. Curves for different number of decision classes (base

Classifier: SVM). oot 262
Figure 7.15. True positive and false positive ratios for binary recognition

tasks (testing set, compound recognition systems).cccu..... 267

Figure 7.16. Representative images of objects used in experiments
concerning object variants (all pictures taken at 191°

Xvi List of Figures

aspect/azimuth, cropped to central 64x64 pixels, and

magnified to show details)......c..ccoevvininninnnininincccees

Figure 7.17. Image of the ZSU class taken at 6° azimuth angle (cropped

to input size, i.€. 48X48 PIXElS)...cererrrerririririierrieercreeeieeas

Figure 7.18. Processing carried out by one of the evolved solutions

(individual 1 of 4; see text for details).......cccceevveiervesieceencnne

Figure 7.19. Processing carried out by one of the evolved solutions

(individual 2 of 4; see text for details).........ccccoevrerevcrrerrnenne

Figure 7.20. Processing carried out by one of the evolved solutions

(individual 3 of 4; see text for details).......cccceeeereerrivereencanene

Figure 7.21. Processing carried out by one of the evolved solutions

(individual 4 of 4; see text for details).........cccecvevrecceinerienrcrinns

List of Tables

Chapter 2
Table 2.1. Sixteen primitive feature images used as the set of terminals.......... 17
Table 2.2. Seventeen primitive OPETatorS.ccceeveeruerreriereererseerenreesseseensennees 19
Table 2.3. The performance on various examples of SAR images................... 29
Table 2.4. The performance results on IR and RGB color images. 45
Table 2.5. The performance results on various examples of SAR images.

The hard limit on composite operator size is used.ccceceervenenne. 54
Table 2.6. The performance results of image-based GP on various SAR

TINAZES. .evveurerrirrenririetetene ettt et ste st sbe s st b e st eb e e b e sasenns 65
Table 2.7. Average training time of region GP and image GP (in

SECOMAS). ..eeiuvrierreereeeiteeeteesteeeteesreesireessreenssaeasreessseessbaesnsseessseeenns 67
Table 2.8. Comparison of the performance of traditional ROI extraction

algorithm and composite operators generated by GP...................... 70
Table 2.9. Average running time (in seconds) of the composite operators

and the traditional ROI extraction algorithm.ccccoecververvennne. 73
Chapter 3
Table 3.1. The performance of the best composite operators from normal

and smart GPs.cccevevinininiininn 94
Table 3.2. The average goodness of the best composite operators from

normal and smart GPS.cccoeevviviviniiinin 116
Table 3.3. The average size and performance of the best composite

operators from normal and smart GPs........c.ccccocevinininininininnins 117
Table 3.4. Average training time of Normal GP and Smart GP...................... 117
Table 3.5. The average performance of the best composite operators from

smart GPs with and without the public library........c..ccccecoeinininn. 118

Table 3.6. Average running time (in seconds) of the composite operators
from normal and smart GPs.cccccoevvvininininiiiiie, 118

XVviii List of Tables

Chapter 4

Table 4.1.

Table 4.2.

Table 4.3.

Table 4.4.

Table 4.5.

Table 4.6.

Table 4.7.

Table 4.8.

Table 4.9,

Experimental results with 300 training target and clutter chips

(MDL, equation (4.2); € = 0.002).....ccceeerrevriernrenrerenrenersreseeeiens

Experimental results with 500 training target and clutter chips

(MDL, equation (4.2); € = 0.0015).....cccveererirmriinirrereiinernrrennens

Experimental results with 700 training target and clutter chips

(MDL, equation (4.2); € = 0.0015)..ccoeiimirieeeeeeeeeeecee

Experimental results with 700 training target and clutter chips

(MDL, equation (4.2); € = 0.0011)...cccveveeieieeieerereee e

Experimental results with 500 training target and clutter chips

(penalty function, equation (4.4); £ =0.0015).....cccevirireencnees

Experimental results with 500 training target and clutter chips
(penalty and # of features, equation (4.5); y = 0.1; ¢ =

0.0015). evvvveeeereeerereeeersseseseeeeeesssesesssseessesssssssesesesssseeesesessesesseee

Experimental results with 500 training target and clutter chips
(penalty and # of features, equation (4.5); y = 0.3; ¢ =

0.0015). covvveeeereeeeeeereeeessseesereoeeesesesseseesesseesesesessssesseseeseseseseereesnes

Experimental results with 500 training target and clutter chips
(penalty and # of features, equation (4.5); vy = 0.5; ¢ =

0.0015). covvveeereeeeereeeemrseseeeeeeeeerssesessssesessssesessseseesesesseseesesesenseese

Experimental results with 500 training target and clutter chips
(error rate and # of features, equation (4.6); y = 0.1; ¢ =

0.0015). ovvvveeeerrereseeeeeesseeeseeeeeneeseseseseessesesesesesessseseserssseseseereesen

Table 4.10. Experimental results with 500 training target and clutter

chips (penalty and # of features, equation (4.6); vy = 0.3; ¢ =

Table 4.11. Experimental results with 500 training target and clutter

chips (penalty and # of features, equation (4.6); vy =0.5; € =

Table 4.12. Experimental results using only one feature for

discrimination (target chips = 500, clutter chips = 500).............

Table 4.13. The number of times each feature is selected in MDL

Experiments 1,2 and 4.cccooviiininniniiinincinniie

156

157

158

159

162

.163

List of Tables Xix

Chapter 5
Table 5.1. Twelve primitive OPerators.c.ocveveeveeereseesiereeeeeereereeeereereseenes 172
Table 5.2. Parameters of CGP used throughout the experiments.................... 178
Table 5.3. Recognition rates of 20 primitive features.c.cceeeeerrieierseeenne, 180
Table 5.4. Performance of composite and primitive features on
object/clutter diSCTimMINAtion.ccceceeeeeirrrrerrerieee e s e 181
Table 5.5. Recognition rates of 20 primitive features (3 objects). 187
Table 5.6. Performance of composite and primitive features on 3-object
AISCIIMINAION. ...veviieeieiicret ettt sttt et enen 188
Table 5.7. Recognition rates of 20 primitive features (5 objects).c...... 190
Table 5.8. Performance of composite and primitive features on 5-object
diSCIIMINATION.eevevirrenietreetetece et se e seeovenee 191

Table 5.9. Average recognition performance of multi-layer neural
networks trained by backpropagation algorithms (3 objects)........ 195

Table 5.10. Average recognition performance of multi-layer neural
networks trained by backpropagation algorithms (5 objects).196
Table 5.11. Recognition performance of C4.5 classification algorithm.......... 197

Chapter 7

Table 7.1. Elementary operations used in the visual learning experiments
(k and 1 denote the number of the input and output arguments,

TESPECLIVELY). oottt sttt ste et ebesae e sresieereseeen 236
Table 7.2. Parameter settings for COIL20 experiments.cceecveviereeeenenne 241
Table 7.3. Description of data for the experiment concerning cooperation

0N ZENOME LEVEL. ...ooviririiriiniiicieinienir et 250
Table 7.4. Performance of recognition systems evolved by means of

cooperation at genome level.........c..ocviviieiieiiiiinin s 251

Table 7.5. Test set confusion matrix for selected EFP recognition system.....251
Table 7.6. Test set confusion matrix for selected CFP recognition system. ...251
Table 7.7. True positive (TP) and false positive (FP) ratios for SAR
binary recognition tasks (testing set). Table presents averages
over 10 independent synthesis processes and their 0.95
confidence INtervals........c.coevevreeneciennienenereereeee s 255
Table 7.8. True positive (TP) and false positive (FP) ratios for SAR
binary recognition tasks (testing set, CFP-A; means over 10

XX List of Tables

independent synthesis processes and 0.95 confidence

F19105 021) T OO P OO SOOI

Table 7.9. Mean and maximum number of populations for SAR binary

recognition tasks (CEFP-A).......ccciovrieniieniinniiieinieennenneneeennes

Table 7.10. Confusion matrices for recognition of object variants for 2-

class recognition SYSEIM.cevrierereeerineniereeeieienreeseenrenaens

Table 7.11. Confusion matrices for recognition of object variants for 4-

class recognition SYSLEIMLvveerveerreererneierreie et et ere e

Table 7.12. True positive and false positive ratios for binary recognition

tasks (testing set, off-line decision level decomposition)..........

262

..263

..266

Preface

Designing object detection and recognition systems that work in the real world
is a challenging task due to various factors including the high complexity of
the systems, the dynamically changing environment of the real world and
factors such as occlusion, clutter, articulation, and various noise contributions
that make the extraction of reliable features quite difficult. Furthermore,
features useful to the detection and recognition of one kind of object or in the
processing of one kind of imagery may not be effective in the detection and
recognition of another kind of object or in the processing of another kind of
imagery. Thus, the detection and recognition system often needs thorough
overhaul when applied to other types of images different from the one for
which the system was designed. This is very uneconomical and requires highly
trained experts. The purpose of incorporating learning into the system design
is to avoid the time consuming process of feature generation and selection and
to lower the cost of building object detection and recognition systems.

Evolutionary computation is becoming increasingly important for computer
vision and pattern recognition fields. It provides a systematic way of synthesis
and analysis of object detection and recognition systems. With learning
incorporated, the resulting recognition systems will be able to automatically
generate new features on the fly and cleverly select a good subset of features
according to the type of objects and images to which they are applied. The
system will be flexible and can be applied to a variety of objects and images.

This book investigates evolutionary computational techniques such as
genetic programming (GP), linear genetic programming (LGP),
coevolutionary genetic programming (CGP) and genetic algorithms (GA) to
automate the synthesis and analysis of object detection and recognition
systems. The ultimate goal of the learning approaches presented in this book
is to lower the cost of designing object detection and recognition systems and
build more robust and flexible systems with human-competitive performance.

XX1l Preface

The book presents four important ideas.

First, this book shows the efficacy of GP and CGP in synthesizing effective
composite operators and composite features from domain-independent
primitive image processing operations and primitive features (both elementary
and complex) for object detection and recognition. It explores the role of
domain knowledge in evolutionary computational techniques for object
recognition. Based on GP and CGP’s ability to synthesize effective features
from simple features not specifically designed for a particular kind of imagery,
the cost of building object detection and recognition systems is lowered and
the flexibility of the systems is increased. More importantly, a large amount of
unconventional features are explored by GP and CGP and these
unconventional features yield exceptionally good detection and recognition
performance in some cases, overcoming the human experts’ limitation of
considering only a small number of conventional features.

Second, smart crossover, smart mutation and a new fitness function based
on the minimum description length (MDL) principle are designed to improve
the efficiency of genetic programming. Smart crossover and smart mutation
are designed to identify and keep the effective components of composite
operators from being disrupted and a MDL-based fitness function is proposed
to address the well-known code bloat problem of GP without imposing severe
restriction on the GP search. Compared to normal GP, smart GP algorithm
with smart crossover, smart mutation and a MDL-based fitness function finds
effective composite operators more quickly and the composite operators
learned by smart GP algorithm have smaller size, greatly reducing both the
computational expense during testing and the possibility of overfitting during
training,

Third, a new MDL-based fitness function is proposed to improve the
genetic algorithm’s performance on feature selection for object detection and
recognition. The MDL-based fitness function incorporates the number of
features selected into the fitness evaluation process and prevents GA from
selecting a large number of features to overfit the training data. The goal is to
select a small set of features with good discrimination performance on both
training and unseen testing data to reduce the possibility of overfitting the
training data during training and the computational burden during testing.

Preface xxiii

Fourth, adaptive coevolutionary linear genetic programming (LGP) in
conjunction with general image processing, computer vision and pattern
recognition operators is proposed to synthesize recognition systems. The basic
two-class approach is extended for scalability to multiple classes and various
architectures and strategies are considered.

The book consists of eight chapters dealing with various evolutionary
approaches for automatic synthesis and analysis of object detection and
recognition systems. Many real world imagery examples are given in all the
chapters and a comparison of the results with standard techniques is provided.

The book will be of interest to scientists, engineers and students working in
computer vision, pattern recognition, object recognition, machine learning,
evolutionary learning, image processing, knowledge discovery, data mining,
cybernetics, robotics, automation and psychology.

Authors would like to thank Ken Grier, Dale Nelson, Lou Tamburino, and
Bob Herklotz for their guidance and support. Many discussions held with Ed
Zelnio, Tim Ross, Vince Velten, Gregory Power, Devert Wicker, Grinnell
Jones, and Sohail Nadimi were very helpful.

The work covered in this book was performed at the University of
California at Riverside. It was partly supported by funding from Air Force
Research Laboratory during the last four years. Krzysztof Krawiec was at the
University of California at Riverside on a temporary leave from Poznan
University of Technology, Poznan, Poland. He would like to acknowledge the
support from the Scientific Research Committee, Poland (KBN). Authors
would like to thank Julie Vu and Lynne Cochran for their secretarial support.

Riverside, California Bir Bhanu
November 2004 Yinggiang Lin
Krzysztof Krawiec

Chapter 1

INTRODUCTION

In recent years, with the advent of newer, much improved and inexpensive
imaging technologies and the rapid expanding of the Internet, more and more
images are becoming available. Recent developments in image collection
platforms produce far more imagery than the declining ranks of image analysts
are capable of handling due to human work load limitations. Relying on
human image experts to perform image analysis, processing and classification
becomes more and more unrealistic. Building object detection and recognition
systems to take advantage of the speed of computer is a viable and important
solution to the increasing need of processing a large quantity of images
efficiently.

1.1 Object Detection and Recognition Problem

The object detection and recognition problem is one of the most important
research areas in pattern recognition and computer vision [7], [18]. It has wide
range of applications in surveillance, reconnaissance, object and target
recognition, autonomous navigation, remote sensing, manufacturing
automation, etc. The major task of object detection is to locate and extract
regions that may contain objects in an image. It is an important intermediate
step to object recognition. The extracted regions are called regions-of-interest
(ROISs) or object chips. ROI extraction is very important to object recognition,

2 Chapter 1. Introduction

since the size of an image is usually large, leading to the heavy computational
burden of processing the whole image. By extracting ROIs, the computational
cost of object recognition is greatly reduced, thus improving the recognition
efficiency. This advantage is particularly useful to real-time applications,
where the recognition speed is of prime importance. Also, by extracting ROIs,
the recognition system can focus on the extracted regions that may contain
potential objects and this can be very helpful in improving the recognition
accuracy. Generally, the extracted ROIs are identical to their corresponding
regions in the original image, but sometimes, they may be images that result
from applying some image processing operations to the corresponding regions
in the original image. No matter what ROIs are, they are passed to an object
recognition module for further processing. Usually, in order to increase the
probability of object detection, some false alarm ROIs, which do not contain
an object, but some natural or man-made clutter, are allowed to pass object
detection phase.

The task of object recognition is first to reject the false alarm ROIs and then
recognize the kinds of objects in the ROIs containing them. It is actually a
signal-to-symbol problem of labeling perceived signals with one or more
symbols. A solution to this problem takes images or the features extracted
from images as input and outputs one or more symbols which are the labels of
the objects in the images. Sometimes, the symbols may further represent the
pose of the objects or the relations between different objects. These symbols
are intended to capture some useful aspects of the input and in turn, permit
some high level reasoning on the perceived signals.

It is well known that automatic object detection and recognition is really not
an easy task. The quality of detection and recognition is heavily dependent on
the kind and quality of features extracted from the image, and it also highly
relies on the representation of an object based on the extracted features. The
features used to represent an object are the key to object detection and
recognition. If useful features with good quality are unavailable to build an
efficient representation of an object, good detection and recognition results
cannot be achieved no matter what detection and recognition algorithms are
used. However, in most real images, there is always some noise, making the
extraction of features difficult. More importantly, since there are many kinds
of features that can be extracted, so what are the appropriate features for the
current detection and recognition task or how to synthesize composite features

Chapter 1. Introduction 3

particularly useful to the detection and recognition from the primitive features
extracted from an image? There is no easy answer to these questions and the
solutions are largely dependent on the intuitive instinct, knowledge, previous
experience and even the bias of human image experts. Object detection and
recognition in many real-world applications is still a challenging problem and
needs further research.

1.2 Motivations for Evolutionary Computation

In the past, object detection and recognition systems are manually developed
and maintained by human experts. The traditional approach requires a human
expert to select or synthesize a set of features to be used in detection and
recognition. However, handcrafting a set of features requires human ingenuity
and insight into the objects to be detected and recognized since it is very
difficult to identify a set of features that characterize a complex set of objects.
Typically, many features are explored before object detection and recognition
systems can be built. There are a lot of features available and these features
may be correlated. To select a set of features which, when acting
cooperatively, can give good performance is very time consuming and
expensive. Sometimes, simple features (also called primitive features) directly
extracted from images may not be effective in detecting and recognizing
objects. At this point, synthesizing composite features useful for the current
detection and recognition task from those simple ones becomes imperative.

Traditionally, it is the human experts who synthesize features to be used.
However, based on their knowledge, previous experience and limited by their
bias and speed, human experts only consider a small number of conventional
features and many unconventional features are totally ignored. Sometimes it is
those unconventional features that yield very good detection and recognition
performance. Furthermore, after the features are selected or designed by
human experts and incorporated into a system, they are fixed. The features
used by the system are pre-determined and the system cannot generate new
features useful to the current detection and recognition task on the fly based on
the already available features, leading to inflexibility of the system. Features
useful to the detection and recognition of one kind of object or in the
processing of one kind of imagery may not be effective in the detection and

4 Chapter 1. Introduction

recognition of another kind of object or in the processing of another kind of
imagery. Thus, the detection and recognition system often needs thorough
overhaul when applied to other types of images that are different from the one
when the system was devised. This is very uneconomical.

Synthesizing effective new features from primitive features is equivalent to
finding good points in the feature combination space where each point
represents a combination of primitive features. Similarly, selecting an
effective subset of features is equivalent to finding good points in the feature
subset space where each point represents a subset of features. The feature
combination space and feature subset space are huge and complicated and it is
very difficult to find good points in such vast spaces unless one has an
efficient search algorithm.

Hill climbing, gradient descent and simulated annealing (also called
stochastic hill climbing) are widely used search algorithms. Hill climbing and
gradient descent are efficient in exploring a unimodal space, but they are not
suitable for finding global optimal points in a multi-modal space due to their
high probability of being trapped in local optima. Thus, if the search space is
a complicated and multi-modal space, they are unlikely to yield good search
results. Simulated annealing has the ability to jump out of local optimal
points, but it is heavily dependent on the starting point. If the starting point is
not appropriately placed, it takes a long time, or even could be impossible, for
simulated annealing to reach good points. Furthermore, in order to apply a
simulated annealing algorithm, the neighborhood of a point must be defined
and the neighboring points should be somewhat similar. This requires some
knowledge about the search space and it also requires some smoothness of the
search space.

It is very difficult, if not impossible, to define the neighborhood of a point
in the huge and complicated feature combination and feature subset spaces,
since similar feature combinations and similar feature subsets may have very
different object detection and recognition performance. Due to the lack of
knowledge about these search spaces, a variety of genetic programming
techniques and genetic algorithms [6], [36], [57], [58], [66] are employed in
this book. In order to apply GP and GA, all that needs to be known are how to
define individuals, how to define crossover and mutation operations on the
individuals and how to evaluate individuals. GP and GA are very much

Chapter 1. Introduction 5

capable of exploring huge complicated multi-modal spaces with unknown
structures. Maintaining a large population of individuals as multiple searching
points, GP and GA explore the search spaces along different directions
concurrently. With multiple searching points and the crossover and mutation
operations’ ability to immediately move a searching point from one portion of
the search space to another faraway portion, GP and GA are less likely to be
trapped at local optimal points. All these characteristics greatly enhance the
probability of finding global optimal points, although they cannot guarantee
the finding of global optima. It is to be noted that GP and GA are not random
search algorithms, they are guided by the fitness of the individuals in the
population. As search proceeds, the population is gradually adapted to the
portion of the search space containing good points.

1.3 Evolutionary Approaches for Synthesis and Analysis

In this book, the techniques necessary for automatic design of object detection
and recognition systems are investigated. Here, the object detection and
recognition system itself is the theme and the efficacy of evolutionary learning
algorithms such as genetic programming and genetic algorithm in the feature
generation and selection is studied. The advantage of incorporating learning is
to avoid the time consuming process of feature selection and generation and to
automatically explore many unconventional features. The system resulting
from the learning is able to automatically generate features on the fly and
cleverly select a good subset of features according to the type of object and
image to which it is applied. The system should be somewhat flexible and can
be applied to a variety of objects and images. The goal is to lower the cost of
designing object detection and recognition systems and build more robust and
flexible systems with human-competitive performance.

This book investigates evolutionary computational techniques such as
genetic programming (GP), coevolutionary genetic programming (CGP),
linear genetic programming (LCP) and genetic algorithm (GA) to automate the
synthesis and analysis of object detection and recognition systems.

First, this book shows the efficacy of GP and CGP in synthesizing effective
composite operators and composite features from domain-independent

6 Chapter 1. Introduction

primitive image processing operations and primitive features for object
detection and recognition. It explores the role of domain knowledge in
evolutionary computation. Based on GP and CGP’s ability to synthesize
effective features from simple features not specifically designed for a
particular kind of imagery, the cost of building object detection and
recognition systems is lowered and the flexibility of the systems is increased.
More importantly, it shows that a large amount of unconventional features are
explored by GP and CGP and these unconventional features yield
exceptionally good detection and recognition performance in some cases,
overcoming the human experts’ limitation of considering only a small number
of conventional features.

Second, smart crossover, smart mutation and a new fitness function based
on minimum description length (MDL) principle are designed to improve the
efficiency of genetic programming. Smart crossover and smart mutation are
designed to identify and keep the effective components of composite operators
from being disrupted and a MDL-based fitness function is proposed to address
the well-known code bloat problem of GP without imposing severe restriction
on the GP search. Compared to normal GP, a smart GP algorithm with smart
crossover, smart mutation and a MDL-based fitness function finds effective
composite operators more quickly and the composite operators learned by a
smart GP algorithm have smaller size, greatly reducing both the computational
expense during testing and the possibility of overfitting during training.

Third, a new MDL-based fitness function is proposed to improve the
genetic algorithm’s performance on feature selection for object detection and
recognition. The MDL-based fitness function incorporates the number of
features selected into the fitness evaluation process and prevents GA from
selecting a large number of features to overfit the training data. The goal is to
select a small set of features with good discrimination performance on both
training and unseen testing data to reduce both the possibility of overfitting the
training data during training and the computational burden during testing.

Fourth, linear genetic programming (LGP) and coevolutionary genetic
programming (CGP) techniques are used to synthesize a feature extraction
procedure (FEP) to generate features for object recognition. FEP consists of a
sequence of instructions, which are primitive image processing operators that
are executed sequentially one after another. Each instruction in a FEP is

Chapter 1. Introduction 7

composed of an opcode determining the operator to be used and arguments
referring to registers from which to fetch the input data and to which to store
the result of the instruction. LGP is a variety of GP with simplified, linear
representation of individuals and it is a hybrid of GA and GP and combines
their advantages. LGP is similar to GP in the sense that each individual
actually contains a sequence of interrelated operators. On the other hand, a
FEP has a fixed number of instructions and an instruction is encoded into a
fixed-length binary string at the genome level, which is essentially equivalent
to GA representation. LGP encoding is, therefore, more positional and more
resistant to destructive crossovers. When CGP is applied, the problem of
feature construction can be decomposed at different levels. We explore
decomposition at the instruction, feature, class and decision levels. Our
experiments show the superiority of decomposition at the instruction level.
With different segments of a FEP evolved by sub-populations of CGP, a better
FEP can be synthesized by concatenating the segments from sub-populations.
The benefits we expect from the decomposition of feature construction by
CGP include faster convergence of the learning process, better scalability of
the learning with respect to the problem size and better understanding of the
obtained solutions.

1.4 Outline of the Book

The outline of the book is as follows:

Chapter 1 is the introduction. It describes object detection and recognition
problems, provides motivation and advantages of incorporating evolutionary
computation in the design of object detection and recognition systems.

Chapter 2 discusses synthesizing composite features for object detection.
Genetic programming (GP) is applied to the learning of composite features
based on primitive features and primitive image processing operations. The
primitive features and primitive image processing operations are domain-
independent, not specific to any kind of imagery so that the proposed feature
synthesis approach can be applied to a wide variety of images.

8 Chapter 1. Introduction

Chapter 3 concentrates on improving the efficiency of genetic
programming. A fitness function based on the minimum description length
(MDL) principle is proposed to address the well-known code bloat problem of
GP while at the same time avoiding severe restriction on the GP search. The
MDL fitness function incorporates the size of a composite operator into the
fitness evaluation process to prevent it from growing too large, reducing
possibility of overfitting during training and the computational expenses
during testing. The smart crossover and smart mutation are proposed to
identify the effective components of a composite operator and keep them from
being disrupted by subsequent crossover and mutation operations to further
improve the efficiency of GP.

In Chapter 4, genetic algorithms (GA) are used for feature selection for
distinguishing objects from natural clutter. Usually, GA is driven by a fitness
function based on the performance of selected features. To achieve excellent
performance during training, GA may select a large number of features.
However, a large number features with excellent performance on training data
may not perform well on unseen testing data due to the overfitting. Also,
selecting more features means heavier computational burden during testing. In
order to overcome this problem, an MDL-based fitness function is designed to
drive GA. With MDL-based function incorporating the number of features
selected into the fitness evaluation process, a small set of features is selected to
achieve satisfactory performance during both training and testing.

Chapter S presents a method of learning composite feature vectors for object
recognition. Coevolutionary genetic programming (CGP) is used to synthesize
composite feature vectors based on the primitive features (simple or relatively
complex) directly extracted from images. The experimental results using real
SAR images show that CGP can evolve composite features that are more
effective than the primitive features upon which they are built.

Chapter 6 presents a coevolutionary approach for synthesizing
recognition systems using linear genetic programming (LGP). It provides a
rationale for the design of the method and outlines main differences in
comparison to standard genetic programming. The basic characteristic of LGP
approach is the linear (sequential) encoding of elementary operations and
passing of intermediate arguments through temporary variables (registers).
Two variants of of the approach are presented. The first approach called,

Chapter 1. Introduction 9

evolutionary feature programming (EFP), engages standard single-population
evolutionary computation. The second approach called, coevolutionary feature
programming (CFP), decomposes feature synthesis problem using cooperative
coevolution. Various decomposition strategies for breaking up the feature
synthesis process are discussed.

Chapter 7 presents experimental results of applying the methodology
described in chapter 7 to real-world computer vision/pattern recognition
problems. It includes experiments using single-population evolutionary feature
programming (EFP), and selected variants of coevolutionary feature
programming (CFP) cooperating at different decomposition levels. To provide
experimental evidence for the generality of the proposed approach, it is
verified on two different real-world tasks. First of them is the recognition of
common household objects in controlled lighting conditions, using the widely
known COIL-20 benchmark database. The second application is much more
difficult and concerns the recognition of different types of vehicles in synthetic
aperture radar (SAR) images.

Finally, Chapter 8 provides the conclusions and future research directions.

Chapter 2

FEATURE SYNTHESIS FOR OBJECT DETECTION

21 Introduction

Designing automatic object detection and recognition systems is one of the
important research areas in computer vision and pattern recognition [7], [35].
The major task of object detection is to locate and extract regions of an image
that may contain potential objects so that the other parts of the image can be
ignored. It is an intermediate step to object recognition. The regions extracted
during detection are called regions-of-interest (ROIs). ROI extraction is very
important in object recognition, since the size of an image is usually large,
leading to the heavy computational burden of processing the whole image. By
extracting ROIs, the recognition system can focus on the extracted regions that
may contain potential objects and this can be very helpful in improving the
recognition rate. Also by extracting ROIs, the computational cost of object
recognition is greatly reduced, thus improving the recognition speed. This
advantage is particularly important for real-time applications, where the
recognition accuracy and speed are of prime importance.

However, the quality of object detection is dependent on the type and
quality of features extracted from an image. There are many features that can
be extracted. The question is what are the appropriate features or how to
synthesize features, particularly useful for detection, from the primitive
features extracted from images. The answer to these questions is largely

12 Chapter 2. Feature Synthesis for Object Detection

dependent on the intuitive instinct, knowledge, previous experience and even
the bias of algorithm designers and experts in object recognition.

In this chapter, we use genetic programming (GP) to synthesize composite
features which are the output of composite operators, to perform object
detection. A composite operator consists of primitive operators and it can be
viewed as a way of combining primitive operations on images. The basic
approach is to apply a composite operator on the original image or primitive
feature images generated from the original one; then the output image of the
composite operator, called composite feature image, is segmented to obtain a
binary image or mask; finally, the binary mask is used to extract the region
containing the object from the original image. The individuals in our GP based
learning are composite operators represented by binary trees whose internal
nodes represent the pre-specified primitive operators and the leaf nodes
represent the original image or the primitive feature images. The primitive
feature images are pre-defined, and they are not the output of the pre-specified
primitive operators.

This chapter is organized as follows: chapter 2.2 provides motivation,
related research and contribution of this chapter; chapter 2.3 provides the
details of genetic programming for feature synthesis; chapter 2.4 presents
experimental results using synthetic aperture radar (SAR), infrared (IR) and
color images. Various comparisons are given in this section to demonstrate the
effectiveness of the approach, including examples of two-class and multi-class
imagery; finally, chapter 2.5 provides the conclusions of this chapter.

2.2 Motivation and Related Research

2.2.1 Motivation

In most imaging applications, human experts design an approach to detect
potential objects in images. The approach can often be divided into some
primitive operations on the original image or a set of related feature images
obtained from the original one. It is the expert who, relying on his/her
experience, figures out a smart way to combine these primitive operations to
achieve good detection results. The task of synthesizing a good approach is

2.2 Motivation and Related Research 13

equivalent to finding a good point in the space of composite operators formed
by the combination of primitive operators.

Unfortunately, the ways of combining primitive operators are infinite. The
human expert can only try a very limited number of conventional
combinations. However, a GP may try many unconventional ways of
combining primitive operations that may never be imagined by a human
expert. Although these unconventional combinations are very difficult, if not
impossible, to be explained by domain experts, in some cases, it is these
unconventional combinations that yield exceptionally good results. The
unlikeliness, and even incomprehensibility of some effective solutions learned
by GP demonstrates the value of GP in the generation of new features for
object detection. The inherent parallelism of GP and the high speed of current
computers allow the portion of the search space explored by GP to be much
larger than that by human experts. The search performed by GP is not a
random search. It is guided by the fitness of composite operators in the
population. As the search proceeds, GP gradually shifts the population to the
portion of the space containing good composite operators.

2.2.2 Related research

Genetic programming, an extension of genetic algorithm, was first proposed
by Koza [55], [56], [57], [58] and has been used in image processing, object
detection and object recognition. Harris and Buxton [39] applied GP to the
production of high performance edge detectors for 1-D signals and image
profiles. The method is also extended to the development of practical edge
detectors for use in image processing and machine vision. Poli [92] used GP to
develop effective image filters to enhance and detect features of interest and to
build pixel-classification-based segmentation algorithms. Bhanu and Lin [14],
[17], [21], [69] used GP to learn composite operators for object detection.
Their experimental results showed that GP is a viable way of synthesizing
composite operators from primitive operations for object detection. Stanhope
and Daida [114] used GP to generate rules for target/clutter classification and
rules for the identification of objects. To perform these tasks, previously
defined feature sets are generated on various images and GP is used to select
relevant features and methods for analyzing these features. Howard et al. [44]
applied GP to automatic detection of ships in low-resolution SAR imagery by

14 Chapter 2. Feature Synthesis for Object Detection

evolving detectors. Roberts and Howard [103] used GP to develop automatic
object detectors in infrared images. Tackett [115] applied GP to the
development of a processing tree for the classification of features extracted
from images.

Belpaeme [5] investigated the possibility of evolving feature detectors under
selective pressure. His experimental results showed that it is possible for GP to
construct visual functionality based on primitive image processing functions
inspired by visual behavior observed in mammals. The inputs for the feature
detectors are images. Koppen and Nickolay [54] presented a special 2-D
texture filtering framework, based on the so-called 2-D-Lookup with its
configuration evolved by GP that allowed representing and searching a very
large number of texture filters. Their experimental results demonstrated that
although the framework may never find the globally optimal texture filters, it
evolves the initialized solutions toward better ones. Johnson et al. [50]
described a way of automatically evolving visual routines for simple tasks by
using genetic programming. The visual routine models used in their work were
initially proposed by Ullman [121] to describe a set of primitive routines that
can be applied to find spatial relations between objects in an input image.
Ullman proposed, that given a specific task, the visual routine processor
compiled and organized an appropriate set of visual routines and applied it to a
base representation. But as Johnson et al. [50] pointed out, Ullman did not
explain how routines were developed, stored, chosen and applied. In their
work, Johnson et al. [50] applied typed genetic programming to the problem of
creating visual routines for the simple task of locating the left and right hands
in a silhouette image of a person. In their GP, crossover was performed by
exchanging between two parents the subtrees of the same root return type. To
avoid the code bloat problem of GP, they simply canceled a particular
crossover if it would produce an offspring deeper than the maximum allowable
depth. Rizki et al. [102] use hybrid evolutionary computation (genetic
programming and neural networks) for target recognition using 1-D radar
signals.

Unlike the prior work of Stanhope and Daida [114], Howard et al. [44] and
Roberts and Howard [103], the input and output of each node of a tree in the
system described in this chapter are images, not real numbers. When the data
from node to node is an image, the node can contain any primitive operation
on images. Such image operations do not make sense when the data is a real

2.3 Genetic Programming for Feature Synthesis 15

number. In our system, the data to be processed are images, and image
operations can be applied to primitive feature images and any other
intermediate images to achieve object detection results. In [114], [44], [103],
image operations can only be applied to the original image to generate
primitive feature images. Also, the primitive features defined in this chapter
are more general and easier to compute than those used in [114], [44]. Unlike
our previous work [17], in this chapter the hard limit of composite operator
size is removed and a soft size limit is used to let GP search more freely while
at the same time preventing the code-bloat problem. The training in this
chapter is not performed on a whole image, but on the selected regions of an
image and this is very helpful in reducing the training time. Of course, training
regions must be carefully selected and represent the characteristics of training
images [11]. Also, two types of mutation are added to further increase the
diversity of the population. Finally, more primitive feature images are
employed. The primitive operators and primitive features designed in this
chapter are very basic and domain-independent, not specific to a kind of
imagery. Thus, this system and methodology can be applied to a wide variety
of images. For example, results are shown here using synthetic aperture radar
(SAR), infrared (IR) and color video images.

2.3 Genetic Programming for Feature Synthesis

In our GP based approach, individuals are composite operators represented by
binary trees. The search space of GP is huge and it is the space of all possible
composite operators. Note that there could be equivalent composite operators
in terms of their output images. In the computer system, a pixel of an image
can assume only finite values, the number of possible images is finite, but this
number is huge and astronomical. Also, if we set a maximum composite
operator size, the number of composite operators is also finite, but again this
number is also huge and astronomical. To illustrate this, consider only a
special kind of binary tree, where each tree has exactly one leaf node and 30
internal nodes and each internal node has only one child. For 17 primitive
operators and only one primitive feature image, the total number of such trees
is 17%. It is extremely difficult to find good composite operators from this vast
space unless one has a smart search strategy.

16 Chapter 2. Feature Synthesis for Object Detection

2.3.1 Design considerations

There are five major design considerations, which involve: determining the set
of terminals; the set of primitive operators; the fitness measure; the parameters
for controlling the evolutionary run; and the criterion for terminating a run.

o The set of terminals: The set of terminals used in this chapter are sixteen
primitive feature images generated from the original image: the first one is the
original image; the others are mean, deviation, maximum, minimum and
median images obtained by applying templates of sizes 3x3, 5x5 and 7x7, as
shown in Table 2.1. These images are the input to composite operators. GP
determines which operations are applied on them and how to combine the
results. To get the mean image, we translate a template across the original
image and use the average pixel value of the pixels covered by the template to
replace the pixel value of the pixel covered by the central cell of the template.
To get the deviation image, we just compute the pixel value difference
between the pixel in the original image and its corresponding pixel in the mean
image. To get maximum, minimum and median images, we translate the
template across the original image and use the maximum, minimum and
median pixel values of the pixels covered by the template to replace the pixel
value of the pixel covered by the central cell of the template, respectively.

2.3 Genetic Programming for Feature Synthesis

17

Table 2.1. Sixteen primitive feature images used as the set of terminals.

Primitive Primitive
feature feature
No. image Description | No. image Description
0 PFIMO Original image 8 PFIM8 5x5 maximum
image
1 PFIMI 3x3 mean 9 PFIM9 7x7 maximum
image image
2 PFIM2 5x5 mean 10 PFIMI10 3x3 minimum
image image
3 PFIM3 7x7 mean 11 PFIM11 5x5 minimum
image image
4 PFIM4 3x3 deviation 12 PFIM12 7x7 mininum
image image
5 PFIMS 5x5 deviation 13 PFIM13 3x3 median
image image
6 PFIM6 7x7 deviation 14 PFIM14 5%5 median
image image
7 PFIM7 3%3 maximum 15 PFIM15 7x7 median
image image

18 Chapter 2. Feature Synthesis for Object Detection

e The set of primitive operators: A primitive operator takes one or two
input images, performs a primitive operation on them and stores the result in a
resultant image. Currently, 17 primitive operators are used by GP to form
composite operators, as shown in Table 2.2, where A and B are input images
of the same size and c is a constant (ranging from —20 to 20) stored in the
primitive operator. For operators such as ADD, SUB, MUL, etc., that take two
images as input, the operations are performed on the pixel-by-pixel basis. In
the operators MAX, MIN, MED, MEAN and STDV, a 3x3, 5x5 or 7x7
neighborhood is used with equal probability. Operator 16 (MEAN) can be
considered as a kind of convolution for low pass filtering and operator 17
(STDV) is a kind of convolution for high pass filtering. Operators 13 (MAX),
14 (MIN) and 15 (MED) can also be considered as convolution operators. We
do not include edge operators for several reasons. First, these operators are not
primitive and we want to investigate if GP can synthesize effective composite
operators or features from simple and domain-independent operations. This is
important since without relying on domain knowledge, we can examine the
power of a learning algorithm when applied to a variety of images. Second,
edge detection operators can be dissected into the above primitive operators
and it is possible for GP to synthesize edge operators or composite operators
approximating them if they are very useful to the current object detection task.
Finally, the primitive operator library is decoupled from the GP learning
system. Edge detection operators can be added in the primitive operator library
if they are absolutely needed by the current object detection task.

Some operations used to generate feature images are the same as some
primitive operators (see Table 2.1 and Table 2.2), but there are some
differences. Primitive feature images are generated from original images, so
the operations generating primitive feature images are applied to an original
image. A primitive operator is applied to a primitive feature image or to an
intermediate image output that is generated by the child node of the node
containing this primitive operator. In short, the input image of a primitive
operator varies.

2.3 Genetic Programming for Feature Synthesis

19

Table 2.2. Seventeen primitive operators.

No. Operator Description
1 | ADD (A, B) Add images A and B.
2 | SUB(A,B) Subtract image B from A.
3 | MUL (A, B) Multiply images A and B.
4 | DIV(A,B) Divide image A by image B (If the pixel in B has
value 0, the corresponding pixel in the resultant
image takes the maximum pixel value in A).
5 |MAX2 (A, B) | The pixel in the resultant image takes the larger pixel
value of images A and B.
6 | MIN2 (A,B) | The pixel in the resultant image takes the smaller
pixel value of images A and B.
7 | ADDC (A) Increase each pixel value by c.
8 | SUBC(A) Decrease each pixel value by c.
9 | MULC (A) Multiply each pixel value by c.
DIVC (A) Divide each pixel value by c.
SQRT (A) For each pixel with value v, if v > 0, change its value
to~/v . Otherwise, to —y—v.
12 | LOG (A) For each pixel with value v, if v > 0, change its value
to In(v). Otherwise, to —In(-v).
13 | MAX (A) Replace the pixel value by the maximum pixel value
in a 3x3, 5x5 or 7x7 neighborhood.
14 | MIN (A) Replace the pixel value by the minimum pixel value
in a 3x3, 5x5 or 7x7 neighborhood.
15 | MED (A) Replace the pixel value by the median pixel value in
a 3x3, 5x5 or 7x7 neighborhood.
16 | MEAN (A) Replace the pixel value by the average pixel value of
a 3x3, 5x5 or 7x7 neighborhood.
17 | STDV (A) Replace the pixel value by the standard deviation of
pixels in a 3x3, 5x5 or 7x7 neighborhood.

20 Chapter 2. Feature Synthesis for Object Detection

o The fitness measure: It measures the extent to which the ground-truth and
the extracted ROI overlap. The fitness value of a composite operator is
computed in the following way. Suppose G and G’ are foregrounds in the
ground-truth image and the resultant image of the composite operator
respectively. Let n(X) denote the number of pixels within region X, then
Fitness = n(GNG’) / n(G v G’). The fitness value is between 0 and 1. If G and
G’ are completely separated, the value is 0; if G and G’ are completely
overlapped, the value is 1.

e Parameters and termination: The key parameters are: the population size
M; the number of generations N; the crossover rate; the mutation rate; and the
fitness threshold. The GP stops whenever it finishes the pre-specified number
of generations or whenever the best composite operator in the population has
fitness value greater than the fitness threshold.

2.3.2 Selection, crossover and mutation

GP searches through the space of composite operators to generate new
composite operators, which may be better than the previous ones. By
searching through the composite operator space, GP gradually adapts the
population of composite operators from generation to generation and improves
the overall fitness of the whole population. More importantly, GP may find an
exceptionally good composite operator during the search. The search is done
by performing selection, crossover and mutation operations [2], [71], [118].
The initial population is randomly generated and the fitness of each individual
is evaluated.

e Selection: The selection operation involves selecting composite operators
from the current population. In this chapter, we use tournament selection,
where a number of individuals (in this case five) are randomly selected from
the current population and the one with the highest fitness value is copied into
the new population.

e Crossover: To perform crossover, two composite operators are selected on
the basis of their fitness values. The higher the fitness value, the more likely
the composite operator is selected for crossover. These two composite
operators are called parents. One internal node in each of these two parents is
randomly selected, and the two subtrees rooted at these two nodes are

2.3 Genetic Programming for Feature Synthesis 21

exchanged between the parents to generate two new composite operators,
called offspring. The offspring are composed of subtrees from their parents. If
two composite operators are somewhat effective in detection, then some of
their parts probably have some merit. The reason that an offspring may be
better than the parents is that recombining randomly chosen parts of somewhat
effective composite operators may yield a new composite operator that is even
more effective in detection.

It is easy to see that the size of one offspring (i.e., the number of nodes in
the binary tree representing the offspring), may be greater than both parents.
So if we do not control the size of composite operators when implementing
crossover in this simple way, the sizes of composite operators will become
larger and larger as GP proceeds. This is the well-known code bloat problem
of GP. It is a very serious problem, since when the size becomes too large, it
will take a long time to execute a composite operator, thus, greatly reducing
the search speed of GP. Further, large-size composite operators may overfit
the training data by approximating various noisy components of an image.
Although the results on the training image may be very good, the performance
on unseen testing images may be bad. Also, large composite operators take up
a lot of computer memory. Due to the finite computer resources and the desire
to achieve a good running speed (efficiency) of GP, we must limit the size of
composite operator by specifying its maximum size. In our previous work
[17], if the size of one offspring exceeds the maximum size allowed, the
crossover operation is performed again until the sizes of both offspring are
within the limit. Although this simple method guarantees that the size of
composite operators does not exceed the size limit, it is a brutal method since
it sets a hard size limit. The hard size limit may restrict the search performed
by GP, since after randomly selecting a crossover point in one composite
operator, GP cannot select some nodes of the other composite operator as a
crossover point in order to guarantee that both offspring do not exceed the size
limit. However, restricting the search may greatly reduce the efficiency of GP,
making it less likely to find good composite operators.

One may suggest that after two composite operators are selected, GP may
perform crossover twice and may each time keep the offspring of smaller size.
This method can enforce the size limit and will prevent the sizes of offspring
composite operators from growing large. However, GP will now only search

22 Chapter 2. Feature Synthesis for Object Detection

the space of these smaller composite operators. With a small number of nodes,
a composite operator may not capture the characteristics of objects to be
detected. How to avoid restricting the GP search while at the same time
prevent code-bloat is the key to the success of GP and it is still a subject of
intensive research. The key is to find a balance between these two conflicting
factors.

In this chapter, we set a composite operator size limit to prevent code-
bloating, but unlike our previous work, the size limit is a soft size limit, so it
restricts the GP search less severely than the hard size limit. With a soft size
limit, GP can select any node in both composite operators as crossover points.
If the size of an offspring exceeds the size limit, GP still keeps it and evaluates
it later. If the fitness of this large composite operator is the best or very close
to the fitness of the best composite operator in the population, it is kept by GP;
otherwise, GP randomly selects one of its sub-trees of size smaller than the
size limit to replace it in the population. In this chapter, GP discards any
composite operator beyond the size limit unless it is the best one in the
population. By keeping the effective composite operators exceeding the size
limit, GP enhances the possibility of finding good composite operators, since
good composite operators usually contain effective components (sub-trees)
and these effective components are kept by the soft size limit and they may
transfer to other composite operators during crossover. Also, by keeping some
large composite operators, the size difference between composite operators in
the population is widened and this is helpful in reducing the possibility of
fitness bloat (in which an increasing number of redundant composite operators
in the population evaluate to the same fitness value), although it cannot get rid
of it. With a hard size limit, many composite operators in the population have
size equal or very close to the hard size limit in the later generations of GP.
This increases the possibility of fitness bloat. However, large composite
operators kept by the soft size limit take a long time to execute and many of
them have redundant branches. By getting rid of the redundant branches, we
can reduce the size and running time of composite operators without degrading
their performance. But, in order to identify the redundant branches, the fitness
of each internal node has to be evaluated and this is a time-consuming process.
Moreover, some redundant branches are effective components. They are
redundant just because they are in an inhospitable context and their effect is
cancelled by other nodes. Eliminating them does no good to the GP search
since these effective components may go into other friendly composite

2.3 Genetic Programming for Feature Synthesis 23

operators via crossover operation. Also, composite operators with redundant
branches are more resistant to destructive crossover and mutation. Without
redundant branches, each part of a composite operator is important to its
performance and breaking any component may have a major impact on the
performance of the composite operator.

e Mutation: In order to avoid premature convergence, mutation is
introduced to randomly change the structure of some individuals to maintain
the diversity of the population. Composite operators are randomly selected for
mutation. In this system, there are three types of mutation invoked with equal
probability:

1. Randomly select a node of the binary tree representing the composite
operator and replace the subtree rooted at this node, including the node
selected, by a new randomly generated binary tree

2. Randomly select a node of the binary tree representing the composite
operator and replace the primitive operator stored in the node with another
primitive operator of the same arity as the replaced one. The replacing
primitive operator is selected at random from all the primitive operators
with the same arity as the replaced one.

3. Randomly select two subtrees within the composite operator and swap
these two subtrees. Of course, neither of the two sub-trees can be the sub-
tree of the other.

2.3.3 Steady-state and generaiional genetic programming

Both steady-state and generational genetic programming are used in this
chapter. In steady-state GP, two parent composite operators are selected on the
basis of their fitness for crossover. The children of this crossover replace a pair
of composite operators with the smallest fitness values. The two children are
executed immediately and their fitness values are recorded. Then another two
parent composite operators are selected for crossover. This process is repeated
until the crossover rate is satisfied. Finally, mutation is applied to the resulting
population and the mutated composite operators are executed and evaluated.
The above cycle is repeated from generation to generation. In generational
GP, two composite operators are selected on the basis of their fitness values
for crossover and generate two offspring. The two offspring are not put into
the current population and do not participate in the following crossover

24 Chapter 2. Feature Synthesis for Object Detection

operations on the current population. The above process is repeated until the
crossover rate is satisfied. Then, mutation is applied to the composite operators
in the current population and the offspring from crossover. After mutation is
done, selection is applied to the current population to select some composite
operators. The number of composite operators selected must meet the
condition that after combining with the composite operators from crossover,
we get a new population of the same size as the old one. Finally, combine the
composite operators from crossover with those selected from the old
population to get a new population and the next generation begins. In addition,
we adopt an elitism replacement method that keeps the best composite
operator from generation to generation. Figure 2.1 and Figure 2.2 show the
pseudo code for steady-state and generational genetic programming
algorithms, respectively.

2.3 Genetic Programming for Feature Synthesis 25

Steady-state Genetic Programming Algorithm:

1.

w N

10.

11.
12.

randomly generate population P of size M and evaluate each composite

operator in P.
for gen =1to Ndoloop 1 //N is the number of generation.
keep the best composite operator in P.
repeat
select 2 composite operators from P based on their fitness values for
crossover through tournament selection.
select 2 composite operators with the lowest fitness values in P for
replacement.
perform crossover operation and let the 2 offspring replace the 2
composite operators selected for replacement.
execute the 2 offspring and evaluate their fitness values.
until crossover rate is met.
perform mutation on each composite operator with probability of
mutation rate and evaluate mutated composite operators.
// After crossover and mutation, a new population P’ is generated.
let the best composite operator from population P replace the worst
composite operator in P’ and let P = P’.
if the fitness value of the best composite operator in P is above fitness
threshold value, then stop.
for each composite operator in P, do loop 2
if its size exceeds the size limit and it is not the best composite
operator in P, then replace it with one of its subtrees whose size is
within the size limit.
endfor // loop 2
endfor //loop 1

Figure 2.1. Steady-state genetic programming algorithm.

26 Chapter 2. Feature Synthesis for Object Detection

Generational Genetic Programming Algorithm:

1.

NN

o %o

10.

11.
12.

randomly generate population P of size M and evaluate each composite

operator in P.

. forgen =1toNdoloopl //N is the number of generation

keep the best composite operator in P.
perform crossoveron the composite operators in P until crossover rate
is satisfied and keep all the offspring from crossover separately.
perform mutation on the composite operators in P and the offspring
from crossover with the probability of mutation rate.
perform selection on P to select some composite operators. The number
of selected composite operators must be M minus the number of
composite operators from crossover.
combine the composite operators from crossover with those selected
from P to get a new population P’ of the same size as P.
evaluate offspring from crossover and the mutated composite operators.
let the best composite operator from P replace the worst composite
operator in P’ and let P =P".
if the fitness of the best composite operator in P is above fitness
threshold, then stop.
for each composite operator in P, do loop 2.
if its size exceeds the size limit and it is not the best composite
operator in P, then replace it with one of its subtrees whose size is
within the size limit.
endfor // loop 2

endfor //loop 1

Figure 2.2. Generational genetic programming algorithm.

2.4 Experiments 27

24 Experiments

Various experiments are performed to test the efficacy of genetic
programming in extracting regions of interest from real synthetic aperture
radar (SAR) images, infrared (IR) images and RGB color images. We provide
detailed results using examples from remote sensing, target recognition, and
survallence/monitoring application areas. We give several comparisons to
demonstrate the effectiveness of the approach. These include comparisons
with the image-based genetic programming and the traditional ROI extraction
algorithm. We also provide the performance of the GP with hard limit on the
composite operator size. The results from the hard size limit GP are compared
with those from the MDL-based GP in chapter 3. We provide examples of
both two-class classification and multi-class classification.

The size of SAR images is 128x128, except the tank SAR images whose
size is 80x80, and the size of IR and RGB color images is 160x120. GP in
chapter 2.4.1 Examples 1-5, 2.4.2, 2.4.5 and 2.4.6 is not applied to a whole
training image, but only to a region or regions carefully selected from a
training image, to generate the composite operators. The generated composite
operator (with the highest fitness) is then applied to the whole training image
and to some other testing images to evaluate it. The advantage of performing
training on a small selected region is that it can greatly reduce the training
time, making it practical for the GP system to be used as a subsystem of other
learning systems, which improve the efficiency of GP by adapting the
parameters of GP system based on its performance. Our experiments show
that if the training regions are carefully selected from the training images, the
best composite operator generated by GP is effective. In the following
experiments in sections 2.4.1, 2.4.2, 2.4.3, and 2.4.6, the parameters are:
population size (100), the number of generations (70), the fitness threshold
value (1.0), the crossover rate (0.6), the mutation rate (0.05), the soft size limit
of composite operators (30), and the segmentation threshold (0). In each
experiment, GP is invoked ten times with the same parameters and the same
training region(s). The coordinate of the upper left corner of an image is (0, 0).
The ground-truth is used only during the training, it is not needed during
testing. We use it in testing only for evaluating the performance of the
composite operator on testing images. The size, orientation or shape of the
objects in testing images is different from those in the training images.

28 Chapter 2. Feature Synthesis for Object Detection

241 SARImages

Five experiments are performed with real SAR images. The experimental
results from one run and the average performance of ten runs are given in
Table 2.3. We select the run in which GP finds the best composite operator
among the composite operators found in all ten runs. The first two rows show
the average values of the above fitness values over all ten runs. The third and
fourth rows show the fitness value of the best composite operator and the
population fitness value (average fitness value of all the composite operators
in the population) on training region (s) in the initial and final generations in
the selected run. The fitness values of the best composite operators on the
entire training image (numbers with a * superscript) and other testing images
in their entirety are also given. The regions extracted during the training and
testing by the best composite operator from the selected run are shown in the
following examples.

Example 1 — Road extraction: Three images contain road, the first one
contains horizontal paved road and field (Figure 2.3(a)); the second one
contains unpaved road and field (Figure 2.10 (a)); the third one contains
vertical paved road and grass (Figure 2.10(d)). Training is done on the training
regions of training image shown in Figure 2.3(a). After the training, the
learned composite operator is evaluated on the whole training image and
testing images. There are two training regions, locating from (5, 19) to (50,
119) and from (82, 48) to (126, 124), respectively. Figure 2.3(b) shows the
ground-truth provided by the user and the training regions. The white region
corresponds to the road and only the training regions of the ground-truth are
used in the evaluation during the training. Figure 2.4 shows the sixteen
primitive feature images of the training image.

2.4 Experiments 29
Table 2.3. The performance on various examples of SAR images
Training Performance
Road Lake River Field Tank
fop £, |[fop f, fop f, fop £, |[fop fp
AV 1055 1027]059 1032|048 [018]0.54 [037]061 |0.17
initial
Ave,

g |0-83 0601095 10921085 |0.77(0.76 |0.59|0.86 |0.68
finital | 0.68 |0.2810.56 [0.32 10.65 |0.18]0.53 |0.39[0.51 |0.16
0.95 0.97 0.90 0.78 0.88
S 003" |97 093* 993 (071" |98 |089" |00 |0sg" | 080
Testing Performance

Road Lake River Field Tank
fo | 090,093 0.98 0.83 0.80 0.84
fop: fitness of the best composite operator on selected region(s),
f,: fitness of population on selected region(s),

*.

indicate fitness on the entire training images,

finiial; fitness of the initial generation on selected region(s),
fina: fitness of the final population on selected region(s),

frest:

fitness of the best composite operator on the entire testing images.

30 Chapter 2. Feature Synthesis for Object Detection

e, [
(a) paved road (b) ground- (c) composite (d) ROI
vs. field truth feature image extracted

Figure 2.3. Training SAR image containing road.

The generational GP is used to synthesize a composite operator to extract the
road and the results of the best of the ten runs (sixth run) are reported. The
fitness value of the best composite operator in the initial population is 0.68 and
the population fitness value is 0.28. The fitness value of the best composite
operator in the final population is 0.95 and the population fitness value is 0.67.
Figure 2.3(c) shows the output image of the best composite operator on the
whole training image and Figure 2.3(d) shows the binary image after
segmentation. The output image has both positive pixels in brighter shade and
negative pixels in darker shade. Positive pixels belong to the region to be
extracted. The fitness value of the extracted ROI is 0.93. The best composite
operator has 17 nodes and its depth is 16. It has only one leaf node containing
5x5 median image. The median image is less noisy, since median filtering is
effective in eliminating speckle noises. The best composite operator is shown
in Figure 2.5, where PFIM14 is 5x5 median image. Figure 2.6 shows how the
average fitness of the best composite operator and average fitness of
population over all 10 runs change as GP explores the composite operator
space. Unlike [17] where the population fitness approaches the fitness of the
best composite operator as GP proceeds, in Figure 2.6, population fitness is
much lower than that of best composite operator even at the end of GP search.
It is reasonable, since we don’t restrict the selection of crossover points. The
population fitness is not important since only the best composite operator is
used in testing. If GP finds one effective composite operator, the GP learning
is successful. The large difference between the fitness of the best composite
operator and the population indicates that the diversity of the population is
always maintained during the GP search, which is very helpful in preventing
premature convergence.

2.4 Experiments 31

PFIM12 PFIM13 PFIM14 PFIM15

Figure 2.4. Sixteen primitive feature images of training SAR image containing road.

32 Chapter 2. Feature Synthesis for Object Detection

MED MAX MAX MULC MAX —|
I— MULC — ADDC — MAX SQRT MEAN
l_. MULC |— MAX MULC DIVC DIVC

|— MAX

72}

7
0]
5
&=

Figure 2.5. Learned composite operator tree.

1
best

0.8
ool

0.2

Figure 2.6. Fitness versus generation (road vs. field).

0 5 10152025303540455055606570

generation

2.4 Experiments 33

Ten best composite operators are learned in ten runs. After computing the
percentage of each primitive operator and primitive feature image among the
total number of internal nodes (representing primitive operators) and the total
number of leaf nodes (representing primitive feature images) of these ten best
compsite operators, we get the utility (frequency of occurence) of primitive
operators and primitive feature images, which is shown in Figure 2.7(a) and
(b). MED (primitive operator 15) and PFIMS (5x5 deviation image) have the
highest frequency of utility. Figure 2.8 shows the output image of each node of
the best composite operator shown in Figure 2.5. From left to right and top to
bottom, the images correspond to nodes sorted in the pre-order traversal of the
binary tree representing the best composite operator. The output of the root
node is shown in Figure 2.3(c), and Figure 2.8 shows the outputs of other
nodes. The primitive operators in Figure 2.8 are connected by arrow. The
operator at the tail of an arrow provides input to the operator at the head of the
arrow. After segmenting the output image of a node, we get the ROI (shown as
the white region) extracted by the corresponding subtree rooted at the node.
The extracted ROIs and their fitness values are shown in Figure 2.9. If an
output image of a node has no positive pixel (for example, the output of
MEAN primitive operator), nothing is extracted and the fitness value is 0; if an
output image has positive pixels only (for example, PFIM14 has positive
pixels only), everything is extracted and the fitness is 0.25. The output of the
root node storing primitive operator MED is shown in Figure 2.3(d).

34 Chapter 2. Feature Synthesis for Object Detection

0.6

0.4
0.3 -
0.2 -
0.1 -
0 +=r=r0,

1 3 5 7 9 11 13 15 17
(a) primitive operator

utility

‘D‘,:.‘EI‘D‘_‘.::‘.:.‘D‘E“V |

0.4 -
0.3 -
0.2 1
0.1 -

utility

01 2 3 456 7 8 910111213 14 15
(b) primitive feature image

Figure 2.7. Utility of primitive operators and primitive feature images.

2.4 Experiments 35

- : - - 3 ’ ..i.-vr - ¥ T S

— MULC <«4— ADDC <«4— MAX «— SOIXF

. m _ . .
S SR e e e

MEAN <«4—— MULC <4— MAX <«— MUkC

Fa AP e - -

DIVC <4— DIVC ¢— MAX <«— PFIMI4

Figure 2.8. Feature images output by the nodes of the best composite operator. The
ouput of the root node is shown Figure 2.3(c).

36 Chapter 2. Feature Synthesis for Object Detection

]

MAX MULC MAX
(o 93) (0.76) (0.52) (0.12)

—— MUL ADDC <— MAX SQRT
(0.09) (0.68) (0) (0)4

MAX <4— MULC
0) 0) (0.25) (0.25)

—— DIVC 4 DIVC 4 MAX <«— PFIMI4
() (0.25) (0.25) (0.25)

Figure 2.9. ROIs extracted from the output images of the nodes of the best composite
operator. The fitness value is shown for the entire image. The ouput of the root node
is shown Figure 2.3(d).

2.4 Experiments 37

We applied the composite operator obtained in the above training to the
other two real SAR images shown in Figure 2.10 (a) and Figure 2.10 (d).
Figure 2.10 (b) and Figure 2.10 (e) show the output of the composite operator
and Figure 2.10 (c) shows the region extracted from Figure 2.10 (a). The
fitness value of the region is 0.90. Figure 2.10 (f) shows the region extracted
from Figure 2.10(d). The fitness value of the region is 0.93.

[

(a) unpaved (b) composite (c) ROI
road vs. field feature image extracted

(d) paved road (e) composite (f) ROI extracted
Vs. grass feature image

Figure 2.10. Testing SAR images containing road.

Example 2 — Lake Extraction: Two SAR images contain lake (Figure
2.11(a), Figure 2.12(a)), the first one contains a lake and field, and the second
one contains a lake and grass. Figure 2.11(a) shows the original training image
containing lake and field and the training region from (85, 85) to (127, 127).
Figure 2.11(b) shows the ground-truth provided by the user. The white region
corresponds to the lake to be extracted. Figure 2.12 (a) shows the image
containing lake and grass used only in testing.

38 Chapter 2. Feature Synthesis for Object Detection

()Ia vs. field (b) ground-truh (c) composite (d) ROI
feature image

Figure 2.11. Training SAR image containing lake.

The steady-state GP is used to generate the composite operator and the
results of the best of ten runs (ninth run) are shown. The fitness value of the
best composite operator in the initial population is 0.56 and the population
fitness value is 0.32. The fitness value of the best composite operator in the
final population is 0.97 and the population fitness value is 0.93. Figure 2.11(c)
shows the output image of the best composite operator on the whole training
image and Figure 2.11(d) shows the binary image after segmentation. The
fitness value of the extracted ROI is 0.93.

We apply the composite operator to the testing image containing lake and
grass. Figure 2.12(b) shows the output of the composite operator and Figure
2.12(c) shows the region extracted from Figure 2.12(a). The fitness of the
region is 0.98.

(a) lake vs. grass (b) composite feature (c) ROl extracted
image

Figure 2.12. Testing SAR image containing lake.

2.4 Experiments 39

Example 3 — River Extraction: Two SAR images contain river and field.
Figure 2.13(a) and Figure 2.13(b) show the original training image and the
ground-truth provided by the user. The white region in Figure 2.13(b)
corresponds to the river to be extracted. The training regions are from (68, 31)
to (126, 103) and from (2, 8) to (28, 74). The testing SAR image is shown in
Figure 2.16(a).

(b) ground-truth (c) composite (d) ROI extracted
feature image

Figure 2.13. Training SAR image containing river.

The steady-state GP was used to generate the composite operator and the
results from the best of ten runs (fourth run) are reported. The fitness value of
the best composite operator in the initial population is 0.65 and the population
fitness value is 0.18. The fitness value of the best composite operator in the
final population is 0.90 and the population fitness value is 0.85. Figure 2.13(c)
shows the output image of the best composite operator on the whole training
image and Figure 2.13(d) shows the binary image after segmentation. The
fitness value of the extracted ROI is 0.71. The best composite operator has 29
nodes and a depth of 19. It has five leaf nodes that all contain 7x7 median
image shown in Figure 2.14. There are 17 MED operators that are very useful
in eliminating speckle noise. Figure 2.15 shows how the average fitness of the
best composite operator and average fitness of population over all 10 runs
change as GP explores the composite operator space.

40 Chapter 2. Feature Synthesis for Object Detection

(MED (MED (MED (ADD (MED (STDV (MED
PFIM15))) (MED (MED (MED (MED (MED
(MIN2 (MED PFIM15) (MED (MED (MED
(MIN2 (MED PFIM15) (MED (MED (MIN2
PFIM15 (SUBC (DIVC PFIMIS5))))))))))))

Figure 2.14. Learned composite operator tree.

0.9

best
0.7 |
A .
g 05 ﬁ/'- population
* 03]
0.1 e

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

generation

Figure 2.15. Fitness versus generation (river vs. field).

' '? - a-

(a)river vs. field (b) composite feature image (c) ROI extracted

Figure 2.16. Testing SAR image containing river.

2.4 Experiments 41

We apply the composite operator to the testing image containing a river and
field. Figure 2.16(b) shows the output of the composite operator and Figure
2.16(c) shows the region extracted from Figure 2.16(a) and the fitness value of
the region is 0.83. There are some islands in the river and these islands along
with part of the river around them are not extracted.

Example 4 — Field Extraction: Two SAR images contain field and grass.
Figure 2.17(a) and (b) show the original training image and the ground-truth.
The training regions are from (17, 3) to (75, 61) and from (79, 62) to (124,
122). Extracting field from a SAR image containing field and grass is the most
difficult task among the five experiments, since the grass and field are similar
to each other and some small regions between grassy areas are actually field
pixels.

s
.

&

(a) field vs. grass (b) ground-truth (c) composite (d) ROI extracted
feature imaae

Figure 2.17. Training SAR image containing field.

The generational GP was used to generate the composite operator and the
results from the best of ten runs (second run) are reported. The fitness value of
the best composite operator in the initial population is 0.53 and the population
fitness value is 0.39. The fitness value of the best composite operator in the
final population is 0.78 and the population fitness value is 0.64. Figure 2.17(c)
shows the output image of the best composite operator on the whole training
image and Figure 2.17(d) shows the binary image after segmentation. The
fitness value of the extracted ROI is 0.89.

42 Chapter 2. Feature Synthesis for Object Detection

(a) field vs. grass (b) composite feature image (c) ROI extracted

Figure 2.18. Testing SAR image containing field.

We apply the composite operator to the testing image containing field and
grass shown in Figure 2.18(a). Figure 2.18(b) shows the output of the
composite operator and Figure 2.18(c) shows the region extracted from Figure
2.18(a). The fitness value of the region is 0.80.

Example 5 — Tank Extraction: We use 80x80 size SAR images of a T72
tank that are taken under different depression and azimuth angles. The training
image contains a T72 tank at a 17° depression angle and 135° azimuth angle,
which is shown in Figure 2.19(a). The training region is from (19, 17) to (68,
66). The testing SAR image contains a T72 tank at a 20° depression angle and
225° azimuth angle, which is shown in Figure 2.22(a). The ground-truth is
shown in Figure 2.19(b).

SESES

(a)T72 (b) ground- (c) composite (d) ROI
tank truth feature image

Figure 2.19. Training SAR image containing tank.

2.4 Experiments 43

The generational GP is applied to synthesize composite operators for tank
detection and the results from the best of ten runs (first run) are reported. The
fitness value of the best composite operator in the initial population is 0.51 and
the population fitness value is 0.16. The fitness value of the best composite
operator in the final population is 0.88 and the population fitness value is 0.80.
Figure 2.19(c) shows the output image of the best composite operator on the
whole training image and Figure 2.19 (d) shows the binary image after
segmentation. The fitness value of the extracted ROI is 0.88. The best
composite operator, shown in Figure 2.20, has 10 nodes and its depth is 9. It
has only one leaf node, which contains the 5x5 mean image. Figure 2.21
shows how the average fitness of the best composite operator and average
fitness of population over all 10 runs change as GP proceeds.

(MED (SQRT (MULC (MULC (SUBC (MULC
(SQRT (SUBC (SQRT PFIM2)))))))))

Figure 2.20. Learned composite operator tree in LISP notation.

7]

%05 population
Eo03

0 5 10152025 30 3540 45 50 55 60 65 70
generation

Figure 2.21. Fitness versus generation (T72 tank).

44 Chapter 2. Feature Synthesis for Object Detection

We apply the composite operator to the testing image containing T72 tank
under depression angle 20° and azimuth angle 225°. Figure 2.22(b) shows the
output of the composite operator and Figure 2.22(c) shows the region
corresponding to the tank. The fitness of the extracted ROI is 0.84.

v

(a) T72 tank (b) composite feature image (c) ROI extracted

Figure 2.22. Testing SAR image containing tank.

Our results show that GP is very much capable of synthesizing composite
operators for target detection. With more and more SAR images collected by
satellites and airplanes, it is impractical for human experts to scan each SAR
image to find targets. Applying the synthesized composite operators on these
images, regions containing potential targets can be quickly detected and
passed on to automatic target recognition systems or to human experts for
further examination. Concentrating on the regions of interest, the human
experts and recognition systems can perform recognition task more effectively
and more efficiently.

Note that composite operators shown in Figure 2.5 and Figure 2.20 may be
called as “processing chains,” which is a simpler binary tree in which each
internal node has only one child. Most of the composite operators learned by
GP in our experiments are not processing chains.

2.4 Experiments

2.4.2 Infrared and color images

One experiment is performed with infrared (IR) images and two are performed
with RGB color images. The experimental results from one run and the
average performance of ten runs are shown in Table 2.4. As we did in chapter
2.4.1, we select the run in which GP finds the best composite operator among
the composite operators found in all the ten runs. The regions extracted during
the training and testing by the best composite operator from the selected run

are shown in the following examples.

Table 2.4. The performance results on IR and RGB color images.

Training performance
IR image - people | RGB image - car | RGB image - SUV
fOP fp fop fP fOP fp
Ave. | 059 0.21
. . 0.47 0.18 0.34 0.21
Zim'tial
Ave. | o g5 0.65 | 0.72 0.67 | 0.6l 0.56
ffmal
finitial 0.56 0.23 0.35 0.18 0.33 0.22
0.93 0.84 0.69
Sma 085" |07 los2r | 070 | peex | 065
Testing performance
IR image - people | RGB image - car | RGB image - SUV
frest 0.84,0.81,0.86 0.76 0.58

fop: fitness of the best composite operator on selected region(s),
f,: fitness of population on selected region(s),
*. indicate finess on the enfire training images,
finitar: fitness of the initial generation on selected region(s),
fina: fitness of the final population on selected region(s),
fesr: fitness of the best composite operator on the entire testing images.

46 Chapter 2. Feature Synthesis for Object Detection

People extraction in IR images: In IR images, pixel values correspond to the
temperature in the scene. We have four IR images with one used in training
and the other three used in testing. Figure 2.23(a) and (b) show the training
image and the ground-truth. Two training regions are from (59, 9) to (106, 88)
and from (2, 3) to (21, 82), respectively. The left training region contains no
pixel belonging to the person. The reason for selecting it during the training is
that there are major pixel intensity changes among the pixels in this region.
Nothing in this region should be detected. The fitness of composite operator
on this region is defined as one minus the percentage of pixels detected in the
region. If nothing is detected, the fitness value is 1.0. Averaging the fitness
values of the two training regions, we get the fitness during the training. When
the learned composite operator is applied to the whole training image, the
fitness is computed as a measurement of the overlap between the ground-truth
and the extracted ROI, as we did in the previous experiments. Three testing IR
images are shown in Figure 2.26(a), (d) and (g).

. ‘---

(a) person b) ground- (c) composite d) ROI
truth feature image extracted

Figure 2.23. Training IR image containing a person.

The generational GP is applied to synthesize composite operators for person
detection and the results from the best of ten runs (third run) are reported. The
fitness value of the best composite operator in the initial population is 0.56 and
the population fitness value is 0.23. The fitness value of the best composite
operator in the final population is 0.93 and the population fitness value is 0.79.
Figure 2.23(c) shows the output image of the best composite operator on the
whole training image and Figure 2.23(d) shows the binary image after
segmentation. The fitness value of the extracted ROI is 0.85. The best

2.4 Experiments 47

composite operator (shown in Figure 2.24) has 28 nodes and a depth of 13
with 9 leaf nodes. Figure 2.25 shows how the average fitness of the best
composite operator and average fitness of population over all the 10 runs
change as GP proceeds.

(SQRT (SQRT (SUBC (SQRT (MAX2 (MAX2 PFIMI (SUB (MAX2
PFIM14 PFIM15) (DIV (MULC (SQRT (MAX (MAX (ADD
PFIM12 PFIM15))))) PFIM9))) (DIV (MULC (SQRT (MAX (ADD
PFIM12 PFIM9)))) PFIM9))))))

Figure 2.24. Learned composite operator tree in LISP notation.

08 { Dbest

0.6 - population

fitness

0.4 -

0-2 T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

generation

Figure 2.25. Fitness versus generation (person).

We apply the composite operator to the testing images shown in Figure
2.26. Figure 2.26(b), (¢) and (h) show the output of the composite operator and
Figure 2.26(c), (f) and (i) show the ROI extracted. Their fitness values are
0.84, 0.81 and 0.86 respectively.

48 Chapter 2. Feature Synthesis for Object Detection

Car extraction in RGB color images: GP is applied to learn features to
detect a car in RGB color images. Unlike previous experiments, the primitive
feature images in this experiment are RED, GREEN and BLUE planes of a
RGB color image. Figure 2.27(a), (b) and (c) show the RED, GREEN and
BLUE planes of the training image. The ground-truth is shown in Figure
2.27(d). The training region is from (21, 3) to (91, 46).

The steady-state GP is applied to synthesize composite operators for car
detection and the results from best of ten runs (fourth run) are reported. The
fitness value of the best composite operator in the initial population is 0.35 and
the population fitness value is 0.18. The fitness value of the best composite
operator in the final population is 0.84 and the population fitness value is 0.79.
Figure 2.27(e) shows the output image of the best composite operator on the
whole training image and Figure 2.27(f) shows the binary image after
segmentation. The fitness value of the extracted ROI is 0.82. The best
composite operator has 44 nodes and its depth is 21. It has ten leaf nodes with
one containing GREEN plane and the others containing BLUE plane. It is
shown in Figure 2.28, where PFG means GREEN plane and PFB means
BLUE plane. Note that only green and blue planes are used by the composite
operator. Figure 2.29 shows how the average fitness of the best composite
operator and average fitness of population over all 10 runs change as GP runs.

2.4 Experiments

49

(a) person b) composite feature image (c) ROI extracted
(d) person e) composite feature image (f) ROI extracted
(g) person (h) composite feature image (i) ROI extracted

Figure 2.26. Testing IR images containing a person.

50 Chapter 2. Feature Synthesis for Object Detection

RED plane (b) GREEN plane (c) BLUE plane

(d) ground-truth (e) composite feature (f) ROI extracted
image

Figure 2.27. Training RGB color image containing car.

(MED (MED (MED (MULC (MUL (SUB (MIN
(MEAN (MAX2 (MED (ADDC (MAX2 (ADDC
(ADDC (MED (MAX2 (MED (MED (MAX2 (MED
(ADDC PFB)) PFB))) PFB)))) PFB))) (MED PFG))))
(ADDC (MAX2 (ADDC (ADDC (MED (MAX2 (MED
(MED (MAX2 (MED (ADDC PFB)) PFB))) PFB))))
PFB))) (ADDC PFB))))))

Figure 2.28. Learned composite operator tree in LISP notation.

2.4 Experiments 51

0.9
best
3 0'7 _
2 05 / population
=
& 03
01— —

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
generation

Figure 2.29. Fitness versus generation (car).

We apply the composite operator to the testing image whose RED plane is
shown in Figure 2.30(a). Figure 2.30 (b) shows the output of the composite
operator and Figure 2.30(c) shows the ROI extracted. The fitness value of
extracted ROI is 0.76.

(a) RED plane (b) composite feature (c) ROI extracted
image

Figure 2.30. Testing RGB color image containing car.

52 Chapter 2. Feature Synthesis for Object Detection

SUV extraction in RGB color images: In this subsection, GP is applied to
learn features to detect SUV (sports utility vehicle) in RGB color images. The
images containing a SUV have more complicated background than the images
containing the car, increasing the difficulty in SUV detection. This will be a
difficult example for any segmentation technique in computer vision and
pattern recognition. Figure 2.31(a), (b) and (c) show the RED, GREEN and
BLUE planes of the training image and Figure 2.31(d) shows the ground-truth.
The training region is from (20, 21) to (139, 100). Figure 2.31(f) and (g) show
the RED plane and the ground-truth of the testing image.

(a) RED plane (b) GREEN plane (c) BLUE plane (d) ground-truth

(e) ROl extracted (g) ground-truth (h) ROI extracted

Figure 2.31. Training and testing RGB color image containing SUV.

The steady-state GP is applied to synthesize composite operators for SUV
detection and the results from the best of ten runs (fourth run) are reported.
The fitness value of the best composite operator in the initial population is
0.33 and the population fitness value is 0.22. The fitness value of the best
composite operator in the final population is 0.69 and the population fitness
value is 0.65. Figure 2.31(e) and (h) show the ROI extracted by the best
composite operator from training and testing images. The fitness values of the
extracted ROIs are 0.69 and 0.58, respectively. The extracted ROIs are not
very satisfactory, since the shapes of ROIs differ from the shapes of vehicles

2.4 Experiments 53

in images. However, the extracted ROIs contain SUVs in the training and
testing images, which means the locations of the vehicle are correctly detected.

243 Comparison with GP with hard limit on composite operator size

As stated in chapter 2.3, GP has a well-known code bloat problem in that the
size of individuals becomes larger and larger as GP proceeds if no measure is
taken to control the size. Large individuals cause problems such as reducing
the speed of GP, taking up a lot of computer memory, and overfitting the
training data. To resolve this problem, a simple way is to set a limit on the size
of individuals. If crossover or mutation produces an individual above the size
limit, the individual is discarded and crossover or mutation is performed again.

In this section, the performance of a hard-size GP (GP with hard limit on
composite operator size = 30) is compared with the soft-size GP (GP with soft
limit on composite operator size) whose performance is reported before. The
major difference between the soft-size GP and the hard-size GP, as stated in
chapter 2.3, is that in the soft-size GP, a composite operator with size above
the size limit is kept in the population if its fitness value is the highest (used in
this chapter) or above a certain threshold value. All the other parameters of
these two GPs are the same.

Table 2.5 shows the performance of the hard-size GP. In the following, the
results from the best composite operator found in ten runs are shown. The
average performance of hard-size GP over ten runs is compared with that of a
MDL-based GP with smart operators in chapter 3.

54 Chapter 2. Feature Synthesis for Object Detection

Table 2.5. The performance results on various examples of SAR images. The hard
limit on composite operator size is used.

Training Performance
Road Lake River Field Tank
fop f, fop f, fop f, fop f, fop f,
fAvel 0.47 [0.26| 0.64 [032| 049 |0.18] 0.53 |0.38| 0.49 |0.16
initial
Ave.
fm | 082 [0.811093 1092]082 10.77]0.73 |0.72|0.85 |0.83
finitiar | 0.60 10.27(0.62 |0.30(0.59 |0.1910.52 |0.38]0.65 |0.17
0.94 0.99 0.89 0.78 0.88
fonat 090" 0.93 0.95" 0.95 0.72" 0.86 0.88" 0.77 0.88" 0.87
Testing Performance
Road Lake River Field Tank
frese | 090,093 0.97 0.83 0.81 0.84
fop: fitness of the best composite operator on selected region(s),
f,: fitness of population on selected region(s),

*.

flest:

indicate finess on the entire training images,
finitiar: fitness of the initial generation on selected region(s),
fina: fitness of the final population on selected region(s),

fitness of the best composite operator on the entire testing images.

2.4 Experiments 55

e Road extraction: Figure 2.3(a) shows the training image and Figure
2.10(a), (d) show the testing images. The generational GP is used to generate a
composite operator to extract the road and the best composite operator is found
in the seventh run. The fitness value of the best composite operator in the
initial population is 0.60 and the population fitness value is 0.27. The fitness
value of the best composite operator in the final population is 0.94 and the
population fitness value is 0.93. The fitness of the extracted ROI is 0.90.
Figure 2.32(a) shows the output image of the best composite operator in the
final population and Figure 2.32(b) shows the extracted ROI. We apply the
composite operator obtained in the above training to the two testing SAR
images. Figure 2.32(c) and (d) show the output image of the composite
operator and the ROI extracted from Figure 2.10(a), respectively. The fitness
value of the extracted ROI is 0.90. Figure 2.32 (e) and (f) show the output
image of the composite operator and the ROI extracted from Figure 2.10(d),
respectively. The fitness value of the extracted ROI is 0.93.

Catmores D R

(a) composite (b) ROI extracted (c) composite
feature image from Figure 2.3(a) feature image
(d) ROI extracted from (e) composite (f) ROI extracted from
Figure 2.10(a) feature image Figure 2.10(d)

Figure 2.32. Results on SAR images containing road.

56 Chapter 2. Feature Synthesis for Object Detection

The best composite operator has 27 nodes and its depth is 16. It has five leaf
nodes, three contain 5x5 median image and the other two contain 7x7 median
image. It is shown in Figure 2.33, where PFIM14 and PFIM15 are 5x5 and
7x7 median images, respectively. The median images have less speckle noise,
since median filtering is effective in eliminating speckle noise. Figure 2.34
shows the change in the average fitness of the best composite operators and
the average fitness of the populations over all the 10 runs as GP explores the
composite operator space. GP gradually shifts the population to the regions of
space containing good composite operators.

(MAX (MAX (MIN (DIVC (DIV (ADDC
(ADD (ADDC (ADD (SUBC (ADDC (ADD
(SUBC (STDV (MAX (SUBC PFIM15))))
(MAX (SUBC PFIM14))))) (MAX (SUBC
PFIM14)))) (MAX (SUBC PFIM14))))
PFIM15)))))

Figure 2.33. Learned composite operator tree in LISP notation.

0.9
0.8 - best
0.7
0.6 -
0.5
0.4 . population
0.3 -
0.2 T — —

0 510152025303540455055606570

generation

fitness

Figure 2.34. Fitness versus generation (road vs. field).

2.4 Experiments 57

e Lake extraction: Figure 2.11(a) shows the training image and Figure
2.12(a) shows the testing image. The steady-state GP is used to generate the
composite operator and the best composite operator is found in the 4™ run. The
fitness value of the best composite operator in the initial population is 0.62 and
the population fitness value is 0.30. The fitness value of the best composite
operator in the final population is 0.99 and the population fitness value is 0.95.
The fitness of the extracted ROI is 0.95. Figure 2.35(a) shows the output
image of the best composite operator in the final population and Figure 2.35(b)
shows the extracted ROI. We apply the composite operator to the testing SAR
image. Figure 2.35(c) and (d) show the output image of the composite operator
and the extracted ROI with fitness value 0.97, respectively. In Figure 2.35(a)
and (c), pixels in the small dark regions have very low pixel values (negative
values with very large absolute value), thus making many pixels appear bright,
although some of them have negative pixel values.

(a) composite (b) ROl extracted (c) composite (d) ROl extracted
feature image from Figure 2.11(a) feature image from Figure 2.12(a)

Figure 2.35. Results on SAR images containing lake.

58 Chapter 2. Feature Synthesis for Object Detection

e River extraction: Figure 2.13(a) shows the training image and Figure
2.16(a) shows the testing image. The steady-state GP is used to generate the
composite operator and the results from the first run are reported. The fitness
value of the best composite operator in the initial population is 0.59 and the
population fitness value is 0.19. The fitness value of the best composite
operator in the final population is 0.89 and the population fitness value is 0.86.
The fitness of the extracted ROI is 0.72. Figure 2.36(a) shows the output
image of the best composite operator in the final population and Figure 2.36(b)
shows the extracted ROI. We apply the composite operator to the testing
image. Figure 2.36(c) and (d) show the output image of the composite operator
and the extracted ROI with fitness value 0.83.

The best composite operator has 30 nodes and its depth is 23. It has four
leaf nodes, three contain 5x5 mean image and the other one contains 3x3 mean
image. There are more than ten MED operators that are very useful in
eliminating speckle noise. It is shown in Figure 2.37. Figure 2.38 shows how
the average fitness of the best composite operators and the average fitness of
the populations over all the 10 runs change as GP explores the composite
operator space.

Pt

(a) composit<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>